Prospects for Direct-Drive Ignition on the NIF

σ_{rms} = 48% peak-to-valley = 157%

R. L. McCrory Director Laboratory for Laser Energetics University of Rochester 44th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 11–15 November 2002 Summary

Significant experimental and theoretical progress is being made in direct-drive ICF

• LLE's research covers all aspects of direct-drive inertial confinement fusion.

- High-performance cryogenic target implosions are in progress.
- The baseline direct-drive, "all-DT" NIF ignition design is predicted to have a gain of 45 (1-D), 30 (2-D), at 1.6 MJ.
- Recent advances are leading to higher gain and more robust ignition targets:
 - Wetted foam targets to increase laser energy absorption
 - Pulse shaping to tailor the target adiabat
- LLE is exploring the possibility of performing direct-drive implosions in an x-ray drive (asymmetric) configuration on the NIF.
- Recent progress is highlighted in the following talks:
 - RI1.006 Sangster, RI1.004 Goncharov, RI1.005 Li, QI1.005 Smalyuk

Progress of direct-drive ICF gives increasing confidence in achieving ignition on the NIF.

A number of key physics issues associated with capsule implosions are common to both direct and indirect drive

Key Physics Issues

- Energy coupling
- Drive uniformity
- Hydrodynamic instabilities

The target adiabat (α) determines both the target gain and stability

- The adiabat (α) is the ratio of the fuel to Fermi-degenerate pressure:

$$\alpha = \frac{\mathbf{P_{fuel}}}{\mathbf{P_{Fermi}}}$$

- The lower α , the higher the compressed density, increasing the target gain.
- The higher $\boldsymbol{\alpha}$, the more stable the target.
- A target designer's dilemma is to balance gain and stability:
 - choose an intermediate value of α ;
 - tailor α in the target to optimize gain and stability.

UR/LLE 351-nm direct-drive gain curves "all-DT" designs

103

The NIF base-line direct-drive ignition target is a thick DT-ice layer enclosed by a thin CH shell

- Target designs are characterized by the isentrope parameter $\alpha\!\!:$

 $\alpha = \frac{\text{Electron pressure}}{\text{Formi decomposite pressure}}$

Fermi-degenerate pressure

The "all-DT" cryo-target design has two distinct shocks

The National Ignition Facility

Shock timing can be controlled by changing the length or intensity of the foot of the laser pulse.

A direct-drive capsule must tolerate four sources of perturbations to ignite and burn

Scaling gain with $\overline{\sigma}$ allows forming a global nonuniformity budget for the direct-drive point design

Hydrodynamic stability during acceleration is determined by the fuel adiabat

"All-DT," 1.5-MJ Design 3 5 $\alpha = \mathbf{2}$ 4 Gain 10 66 45 39 Peak $\rho R (g/cm^2)$ 1.2 1.2 1.6 0.96 Shell thickness/mix 2 3 7 5 $\bar{\sigma}$ (µ**m**) 2.6 1.5 1.4 1.4 Pulse width 13.0 9.3 8.8 8.0 Pulse contrast ratio **62** 43 27 20

- Nonuniformity: 1-THz SSD, 1-μm inner-surface roughness
- $\overline{\sigma}$ = effective inner-surface nonuniformity after acceleration ($\overline{\sigma}$ = 1.5 corresponds to gain = 30 for α = 3 design.)

Wetted-foam targets have higher laser absorption and more fuel, resulting in higher target gain

• Foams have been used previously to selectively radiatively preheat the ablator.¹

• The foams protects the fuel from preheat due to radiation from the CH.

The addition of a prepulse to the all-DT ignition design puts the outer part of the shell on a higher adiabat, reducing the RT growth rate

 $\gamma_{RT} \sim \alpha_1 \sqrt{kg} - \beta k V_a$

Advanced direct-drive target designs rely on adiabat shaping to optimize target performance and gain

- By reducing the RT growth rate and laser imprint, the shell is significantly less distorted with a picket pulse.
- Initial experimental results are very encouraging.

Initial adiabat shaping experiments with CH shells show a dramatic improvement in target performance

It may be possible to carry out direct-drive implosions on the NIF in indirect-drive configuration

Aitoff projection of intensity on a capsule

 $\sigma_{rms} = 48\%$ peak-to-valley = 157%

σ_{rms} = 6% peak-to-valley = 22%

NIF direct-drive distribution using 24 (×4) beams in indirect-drive illumination

NIF direct-drive intensity distribution with 24 (×4) beams repointed to a pattern similar to OMEGA 24

The penalty from asymmetric illumination may be mitigated by the clever use of phase plate design, beam pointing, pulse shaping, and ice layer/ capsule shimming.

Summary/Conclusions

Significant experimental and theoretical progress is being made in direct-drive ICF

• LLE's research covers all aspects of direct-drive inertial confinement fusion.

- High-performance cryogenic target implosions are in progress.
- The baseline direct-drive, "all-DT" NIF ignition design is predicted to have a gain of 45 (1-D), 30 (2-D), at 1.6 MJ.
- Recent advances are leading to higher gain and more robust ignition targets:
 - Wetted foam targets to increase laser energy absorption
 - Pulse shaping to tailor the target adiabat
- LLE is exploring the possibility of performing direct-drive implosions in an x-ray drive (asymmetric) configuration on the NIF.
- Recent progress is highlighted in the following talks:
 - RI1.006 Sangster, RI1.004 Goncharov, RI1.005 Li, QI1.005 Smalyuk

Progress of direct-drive ICF gives increasing confidence in achieving ignition on the NIF.