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Significant experimental and theoretical progress
is being made in direct-drive ICF

• LLE’s research covers all aspects of direct-drive inertial confinement fusion.

• High-performance cryogenic target implosions are in progress.

• The baseline direct-drive, “all-DT” NIF ignition design is predicted
to have a gain of 45 (1-D), 30 (2-D), at 1.6 MJ.

• Recent advances are leading to higher gain and more robust ignition targets:
– Wetted foam targets to increase laser energy absorption
– Pulse shaping to tailor the target adiabat

• LLE is exploring the possibility of performing direct-drive implosions
in an x-ray drive (asymmetric) configuration on the NIF.

• Recent progress is highlighted in the following talks:
– RI1.006 Sangster, RI1.004 Goncharov, RI1.005 Li, QI1.005 Smalyuk

Progress of direct-drive ICF gives increasing confidence
in achieving ignition on the NIF.

Summary



A number of key physics issues associated with capsule
implosions are common to both direct and indirect drive
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Direct-drive target Indirect-drive target
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Laser beams

Hohlraum using
a cylindrical high-Z case

Diagnostic hole

∑  Energy coupling
∑  Drive uniformity
∑  Hydrodynamic instabilities

Key Physics Issues



• The adiabat (a) is the ratio of the fuel to Fermi-degenerate pressure:

• The lower a, the higher the compressed density, increasing the target gain.

• The higher a, the more stable the target.

• A target designer’s dilemma is to balance gain and stability:
– choose an intermediate value of a ;
– tailor a in the target to optimize

gain and stability.
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The target adiabat (a) determines both the target
gain and stability
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• Target designs are characterized by the isentrope parameter a:
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The NIF base-line direct-drive ignition target is
a thick DT-ice layer enclosed by a thin CH shell
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The “all-DT” cryo-target design has two distinct shocks
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A direct-drive capsule must tolerate four sources
of perturbations to ignite and burn

Target fabrication issues Laser irradiation issues

Outside
capsule
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Inner DT ice
roughness

Drive
symmetry

Laser
imprinting
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Scaling gain with    allows forming a global nonuniformity
budget for the direct-drive point design
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Hydrodynamic stability during acceleration
is determined by the fuel adiabat

“All-DT,” 1.5-MJ Design

a = 2 3 4 5

Gain 66 45 39 10

Peak rR (g/cm2) 1.6 1.2 1.2 0.96

Shell thickness/mix 2 3 5 7

s (mm) 2.6 1.5 1.4 1.4

Pulse width 13.0 9.3 8.8 8.0

Pulse contrast ratio 62 43 27 20

∑ Nonuniformity:  1-THz SSD, 1-mm inner-surface roughness

∑ s = effective inner-surface nonuniformity after acceleration
(s = 1.5 corresponds to gain = 30 for a = 3 design.)



TC5787b

Wetted-foam targets have higher laser absorption
and more fuel, resulting in higher target gain

• The foams protects the fuel from preheat due to radiation from the CH.

• Foams have been used previously to selectively radiatively preheat the ablator.1
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1 D.G. Colombant et al., Phys. of Plasmas 7, 2046 (2000).
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The addition of a prepulse to the all-DT ignition
design puts the outer part of the shell on a higher
adiabat, reducing the RT growth rate
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Advanced direct-drive target designs rely on adiabat
shaping to optimize target performance and gain

• By reducing the RT growth rate and laser imprint,
the shell is significantly less distorted with a picket pulse.

• Initial experimental results are very encouraging.
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Imprint simulations
ORCHID: l = 2–200, DPP+PS, 1-THz SSD
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Initial adiabat shaping experiments with CH shells
show a dramatic improvement in target performance
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NIF direct-drive distribution
using 24 (¥4) beams in

indirect-drive illumination

srms = 48%
peak-to-valley = 157%

It may be possible to carry out direct-drive implosions
on the NIF in indirect-drive configuration
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The penalty from asymmetric illumination may be
mitigated by the clever use of phase plate design,
beam pointing, pulse shaping, and ice layer/
capsule shimming.
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NIF direct-drive intensity distribution
with 24 (¥4) beams repointed

to a pattern similar to OMEGA 24
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Summary/Conclusions


