Optimized Direct-Drive Uniformity

F. J. Marshall University of Rochester Laboratory for Laser Energetics 44th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 11–15 November 2002

- P. W. McKenty
- T. Kessler
- **R.** Forties
- J. A. Kelly
- L. Waxer

Direct-drive illumination uniformity on OMEGA can be further optimized with a new beam shape

- The OMEGA 60-beam geometry provides the basis to achieve highly uniform levels of direct-drive illumination.
- Calculations show that a new distributed phase plate (DPP) design can further minimize nonuniformities due to target position, beam balance, and beam pointing.
- With the new DPP design, the illumination nonuniformities averaged over time can be reduced to ≤1% rms.

Intensity overlap calculations are performed on an Aitoff equal-area projection of the sphere

cosine dependence.

E11991

The n = 3.6 super-Gaussian profile has a deeper, broader σ_{rms} minimum (uniformity maximum)

In the OMEGA 60-beam illumination geometry, there are beam shapes that optimize the uniformity

- n = 2.2 and 3.6 are preferred super-Gaussian orders.
- The n = 3.6 order is less sensitive to beam mispointing and beam-to-beam imbalance.

The new DPP design is a higher-order super-Gaussian and is more optimum for direct-drive illumination on OMEGA

Beam balance affects the low- ℓ -mode ($\ell \le 6$) contributors to the illumination nonuniformity

Target positioning has a dramatic effect on implosion symmetry

The target must be accurately positioned to minimize low- ℓ -mode ($\ell \leq 6$) contributions to the illumination nonuniformity

Both beam imbalance and beam mispointing contribute to low- ℓ -mode ($\ell \leq 6$) illumination nonuniformities

The new DPP design is less sensitive to beam imbalance and beam mispointing.

The low ℓ -mode ($\ell \le 6$) contributors to illumination nonuniformities on OMEGA can be significantly reduced by using an optimized beam shape

UR	
LLE	

	Beam shape	Beam pointing	Beam balance	TOTAL
Current DPP's (n = 2.3)	1.1%	1.9%	1.3 %	2.6 %
New DPP's (n = 4.2)	0.6%	0.6%*	0.4 % [†]	0.9%

σ_{rms} contributors

* Requires precision beam pointing (\leq 10 μ m rms)

[†] Requires precision beam balance ($\leq 2\%$ rms)

All values are time averaged assuming 1-THz SSD conditions.

Direct-drive illumination uniformity on OMEGA can be further optimized with a new beam shape

- The OMEGA 60-beam geometry provides the basis to achieve highly uniform levels of direct-drive illumination.
- Calculations show that a new distributed phase plate (DPP) design can further minimize nonuniformities due to target position, beam balance, and beam pointing.
- With the new DPP design, the illumination nonuniformities averaged over time can be reduced to ≤1% rms.