Capsule areal density asymmetries and time evolution inferred from 14.7-MeV protons in OMEGA implosions

C. K. Li
Plasma Science and Fusion Center
Massachusetts Institute of Technology

44th Annual Meeting of the America Physics Society
Division of Plasma Physics
Orlando, FL
November 11-15, 2002

*Also Senior Visiting Scientist at LLE

Plasma Science and Fusion Center, MIT

Laboratory for Laser Energetics, University of Rochester
Charged-particle spectra are used to study capsule areal density (ρR) asymmetry and time evolution

- Charged-particle spectra are measured simultaneously from different directions during individual OMEGA implosions.
- Experiments demonstrate the presence of low ℓ-mode ρR asymmetry in direct-drive capsule implosions.
- No single source of low ℓ-mode has been identified to dominate measurements of ρR asymmetry.
- Data indicate time evolution of ρR and ρR asymmetry between shock coalescence and compression burn.
- The first proton core imaging provide burn profiles at the times of shock coalescence and compression burn.
Related talks in this conference

- F. J. Marshall et al., GO2.007
- P. W. Mckenty et al., GO2.008
- R. D. Petrasso et al., GO2.015
- P. B. Radha et al., FO2.003
- R. Rygg et al., GO2.014
- T. C. Sangster et al., RI1.006
- B. Schwartz et al., KP1.147
- F. H. Seguin, et al., GO2.013
- V. A. Smalyuk et al., QI1.005
- J. M. Soures et al., GO2.005
Outline

• Charged-particle spectroscopy on OMEGA
• Measurements of ρR asymmetry
• Possible sources of ρR asymmetry
• Evolution of ρR and ρR asymmetry
To study ρR asymmetry, we measure energy loss of 14.7-MeV D^3He protons

$D + \ ^3He \rightarrow \alpha + p$ (14.7 MeV)
Two kinds of charged-particle spectrometers are used to study ρR asymmetry and time evolution.

“Wedge-Range-Filter” spectrometer (WRF)

- Incident protons
- Al "wedge" filter
- CR-39

Particle energies identified from local thickness t and diameter of etched proton tracks in CR-39.

Magnet-based spectrometers (CPS)

- 7.6 kG MAGNET
- 50 keV
- 200 keV
- 600 keV
- 1.0 MeV
- 3.0 MeV
- 10 MeV
- 30 MeV

Particle energies identified from trajectories.
Up to eleven ports can be used for charged-particle spectrometry on the OMEGA target chamber.

- **Yellow** = WRF spectrometers
- **Blue** = Magnet-based CPS’s
Charged-particle spectra are measured simultaneously from different directions during an individual OMEGA implosion.

Shot 21240

Experiments demonstrate low ℓ- mode ρR asymmetry
2D DRACO simulation indicates the low \(\ell \)-mode \(\rho R \) asymmetry at the time near peak burn.

Shot 25697
1-ns square, 23 kJ
beam imbalance \(~6\%\) rms
Measured ρR asymmetry is correlated with beam energy imbalance when it is $\sim 25\%$ rms ($\sigma_{\text{rms}} \sim 9\%$ after beam overlap)
ρR asymmetry is correlated with energy imbalance when this imbalance is ~25% rms.
Under current OMEGA experimental conditions, possible sources of low-mode number ρR asymmetry include:

- Irradiation non-uniformity *
 - Beam energy/power imbalance $\leq 5\%$ rms ($\sigma_{\text{rms}} = 1-2\%$ after beam overlap)
 - Capsule offset from TCC $\leq 5\,\mu m$ ($\sigma_{\text{rms}} \leq 1\%$)
 - Beam mispointing $\leq 20\,\mu m$ ($\sigma_{\text{rms}} \sim 1.9\%$)
 - Beam mistiming $\leq 10\,\text{ps}$ ($\sigma_{\text{rms}} \sim 1\%$)
 - Beam shape ($\sigma_{\text{rms}} \sim 1.1\%$)

- Capsule imperfections

* F. J. Marshall et al., GO2.007 in this conference
When beam energy imbalance is \(\sim 5\% \text{ rms} \) \((\sigma_{\text{rms}} \sim 1-2\%) \), \(\rho R \) asymmetry is uncorrelated with this imbalance.
Measured ρR asymmetry is uncorrelated with offset of the capsule from the target chamber center (TCC) when this offset is $\leq 80 \, \mu m$.

J. M. Soures et al., GO2.005 in this conference
For contiguous shots, similarities in asymmetries suggest that \(\rho R \) asymmetry is uncorrelated with capsule imperfections.
During a two-week interval, ρR asymmetries are randomly distributed over space and time.

D^3He(18)CH[20]
23 kJ, 1-ns square

![Graphs showing data distribution](image)

(a) $\Delta \langle E_p \rangle$ (MeV)
(b) ρR_{total} (mg/cm²)

Port Location

- Each port averaged over 18 shots
- Each shot averaged over 7 ports
No single source of low-order ℓ modes has been identified to dominate the measured ρR asymmetry

Next questions

- How do ρR and ρR asymmetries evolve with time?
- How much are these asymmetries amplified over time?
Evolution of ρR has been studied at the time of shock-coalescence and ~400 ps later, at the time of compression burn.

- $t \approx 2.1$ ns
 Compression burn
 ("bang time")

- $t \approx 1.7$ ns
 Shock coalescence

ρR grows from 13 to 70 mg/cm2 during the ~400ps from shock coalescence to bang time.

Are there any correlations in ρR asymmetry between shock-coalescence time and compression burn time?

Shot 24811
1 ns square, 23kJ

Energy (MeV)
Does the asymmetry seen at compression burn amplify from the time of shock coalescence?

F. H. Seguin, et al., GO2.013 in this conference
Charged-particle spectroscopy could be used to study high \(\ell \)-mode \(\rho R \) modulations at the time of shock coalescence.

Width of shock yield (D\(^3\)He proton) \(\rightarrow T_i \)

Ratio of DDp yield to D\(^3\)Hep yield \(\rightarrow T_i \)
Proton-core-image-spectroscopy (PCIS) potentially provides a method for studying ρR evolution.
Measured proton core images at the time of shock coalescence and \(~400\) ps later, at compression burn.

\[
\begin{align*}
D + ^3\text{He} & \Rightarrow p (14.7 \text{ MeV}) + \alpha (3.6 \text{ MeV}) \\
D + D & \Rightarrow p (3.0 \text{ MeV}) + t (1.0 \text{ MeV})
\end{align*}
\]

Measured fusion burn profiles for Shot 27806.
Summary/Conclusions

Charged-particle spectra are used to study capsule areal density (ρR) asymmetries and time evolution

- Charged-particle spectra are measured simultaneously from different directions during individual OMEGA implosions
- Experiments demonstrate the presence of low ℓ-mode ρR asymmetry in direct-drive capsule implosions
- No single source of low ℓ-mode has been identified to dominate measurements of ρR asymmetry
- Data indicate time evolution of ρR and ρR asymmetry between shock coalescence and compression burn
- The first proton core imaging provide burn profiles at the times of shock coalescence and compression burn
Related talks in this conference

- F. J. Marshall et al., GO2.007
- P. W. Mckenty et al., GO2.008
- R. D. Petrasso et al., GO2.015
- P. B. Radha et al., FO2.003
- R. Rygg et al., GO2.014
- T. C. Sangster et al., RI1.006
- B. Schwartz et al., KP1.147
- F. H. Seguin, et al., GO2.013
- V. A. Smalyuk et al., QI1.005
- J. M. Soures et al., GO2.005