Relationship of secondary nuclear production to implosion characteristics at OMEGA

ρ**R_{fuel,2n} (mg/cm²)**

Shinya Kurebayashi

Plasma Science and Fusion Center Massachusetts Institute of Technology 44th Annual Meeting of the American Physical Society, Division of Plasma Physics 13 November 2002, Orlando, Florida

Contributors

J. R. Rygg, B. E. Schwartz, J. DeCiantis, S. Burke, J. A. Frenje, C. K. Li, F. H. Séguin and R. D. Petrasso*

Plasma Science and Fusion Center, Massachusetts Institute of Technology,

J. A. Delettrez, J. M. Soures, V. Yu Glebov, D. D. Meyerhofer, P. B. Radha, S. Roberts, T. C. Sangster, and C. Stoeckl

Laboratory for Laser Energetics, University of Rochester

N. Hoffman, D. Wilson

Los Alamos National Laboratory

*Also Senior Visiting Scientist at LLE

Outline

- Two models ("hot-spot" and "uniform") are commonly used to relate secondary yields to ρR_{fuel} but give slightly different results.
 - Does either model represent real implosions well?
- ρR_{fuel} inferred from secondary proton and neutron yields are often very different.
 - Is one of them more accurate?
 - Is the theory wrong?
- We use simulations to predict the effects of capsule structure on the accuracy of the diagnostic method.
- We investigate some issues experimentally by comparing new results for thin (~2 μm) glass shell capsules to previous results for thick (~20 μm) plastic shell capsules.
 - Do inferred $\rho R_{\text{fuel,proton, hot-spot (uniform)}}$ and $\rho R_{\text{fuel,neutron, hot-spot (uniform)}}$ agree better for thin shell targets, which have:
 - Higher T_e and lower ρR_{fuel} (which decreases "saturation" effects for secondary protons)
 - less fuel-shell mix

Two species of secondary products can be measured at OMEGA

Secondary protons and neutrons are produced in different regions of the plasma

Hot-spot and uniform models are commonly used to relate secondary yield to $\rho \textbf{R}_{\text{fuel}}$

	Hot-spot model	Uniform model
•	Capsules have constant temperature and density	 Capsules have constant temperature and density
•	All the primary particles are generated at the center of a capsule	 Primary particles are generated uniformly in a capsule

Ratio of secondary proton and neutron yields to primary neutron yield (Y_{2p}/Y_{1n} and Y_{2n}/Y_{1n}) are used to infer ρR_{fuel}^*

*H. Azechi *et al.*, Appl. Phys. **52**, 2608 (1981).
*F. H. Séguin *et al.*, Phys. Plasmas **9**, 2725 (2002).

Ratio of secondary proton and neutron yields to primary neutron yield (Y_{2p}/Y_{1n} and Y_{2n}/Y_{1n}) are used to infer ρR_{fuel}

Hot-spot and uniform models give slightly different results

ρR_{fuel} (g/cm²)

$\rho R_{fuel,2p}$ and $\rho R_{fuel,2n}$ disagree for thick (~20µm) shell capsules

To predict effects of capsule structure, a simple peaked T_i profile was assumed

- <T_i> = 3.0 keV
- < ρ_{D} > = 1.0 g/cc
- Radius of each layer was adjusted to give different values of ρR_{fuel}

Related modeling has been published by P. B. Radha *et al.*, Phys. Plasmas **9**, 2208 (2002) C. K. Li *et al.*, Phys. Rev. Lett. **89**, 165002-1 (2002)

Secondary protons and neutrons can sample different temperatures and densities

Simulations for the peaked temperature profile agree well with the hot-spot model for low ρR_{fuel} but deviate at higher values.

ρR_{fuel} (g/cm²)

For cryogenic targets, yields of secondary particles need to be used more carefully since they are produced in a limited region of the fuel.

Comparison of experiment and simulation for cryogenic shot 28900

Experimentally Determined Values

- Y_{1n}: 1.24E+11

- Y_{2p}: 2.21E+8
 Y_{2n}: 1.17E+9
 <T_i>: 3.6 keV
 ρR_{total}: 61 mg/cm²*

Values From the Simulation

- Y_{1n}: 1.41E+11
- Y_{2p}: 2.25E+8
- Y_{2n}: 1.28E+9
- <T_i>: 3.56 keV
- ρR_{total}: 55.4 mg/cm²
 ρR_{hot}: 8.1 mg/cm² **

Inferred Values

Inferred Values

- $\rho R_{fuel, 2p,hot-spot}$: 14.3 mg/cm²
- $\rho R_{\text{fuel, 2n, hot-spot}}$: 47.9 mg/cm²
- $\rho R_{fuel, 2p,hot-spot}$: 8.12 mg/cm²
- ρR_{fuel, 2n, hot-spot}: 46.7 mg/cm²

* pR_{total} is calculated using the energy downshift of secondary proton spectrum ** ρR_{hot} is the areal density of the hot neutron-producing core (T_i \ge 0.5 keV)

Several diagnostics are used to detect fusion products

protons	neutrons
 Magnet-based Charged- particle spectrometers (CPS) Wedge-range-filter spectrometers (WRF) 	 Indium activation (primary neutron) Copper activation (secondary neutron) neutron Time-of-Flight (secondary neutron)

Up to 11 ports can be used for proton spectrometry on the OMEGA target chamber

Two kinds of spectrometers* are used to get proton spectra

Particle energies identified from local thickness *t* and diameter of etched proton tracks in CR-39.

*F. H. Séguin *et al.*, "Spectrometry of charged particles from inertial-confinement-fusion plasmas", Rev. Sci. Instrum. (to be published).

Secondary proton spectra from a single thick-shell shot

Secondary proton spectra from a single thin shell shot

Yield / MeV (x 10⁶)

Experimental data from thin-shell capsules show better agreement between ρR_{fuel,2p} and ρR_{fuel,2n} than thick-shell and cryogenic capsules.

• Simulations with peaked temperature profile agree with the hot-spot model at low ρR_{fuel} but deviate at high values for both protons and neutrons.

Summary

- Simulations suggest that when $\rho R_{fuel} \cong 10 \text{ mg/cm}^2$ secondary neutron ρR_{fuel} can only be used as upper limit.
- For cryogenic targets, secondary yields need to be used more carefully because
 - Protons are produced mostly in the region of deuterium gas and D_2 ice mix
 - Neutrons are produced mostly in the inner part of D_2 ice region
- Secondary neutrons and protons give nearly the same results for thinshell capsules, which have:
 - Less fuel-shell mix
 - Higher T_e and lower ρR_{fuel} (which decreases "saturation" effects for secondary protons)

Future work

- Simulation using more realistic temperature and density profiles
- Collect more data from thin-shell capsules (2~3 shots are scheduled in the week of December 2, 2002).