M. V. Kozlov, C. J. McKinstrie, and A. V. Maximov

University of Rochester Laboratory for Laser Energetics

44th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 11–15 November 2002 Summary

We developed a model to study fast- and slow-wave SBS and how nonlinearities affect them

- Fast-wave SBS reflectivities are
 - significantly reduced by nonlinear saturation for $T_e/T_i \gtrsim 10$
 - not affected by nonlinear saturation for $T_e/T_i \lesssim 5$
- In CH plasmas, slow-wave SBS reflectivity is much lower than fast-wave SBS reflectivity.
- Slow-wave SBS reflectivities are significantly increased by nonlinear effects, but remain much smaller than fast-wave SBS.

- Description of the model
- Fast-wave SBS at low and high ion temperatures
- Slow-wave SBS
- Conclusions

We modeled SBS in CH plasmas at OMEGA-like parameters

- We modeled backscattering using a one-dimensional fluid model with phenomenological Landau-damping terms.
- Light wavelength: 0.35 μ m
- Pump intensity: $I = 2.45 \times 10^{15} \frac{W}{cm^2}$
- Electron density: $n_e/n_{cr} = 0.46$
- Electron temperature: T_e = 1 keV

Model consists of electron density, ponderomotive potential, ion-fluid equations, and Poisson equations

- Electron density: $n_e = exp(\phi) P = 1 + \delta n_e$
- Pondermotive potential: $\partial_{\mathbf{X}} \mathbf{P} = \alpha \Im \left(\mathbf{n}_{e_1} \right) \sqrt{\mathbf{P}^2 + \mathbf{C}^2}$, $\alpha = \left(v_e / c \right)^2 / ks$, $\mathbf{C} = |\mathbf{a}_0|^2 + |\mathbf{a}_1|^2$
- Ion-fluid equations for species "s":

 $\partial_t \mathbf{n_s} + \partial_{\mathbf{X}} (\mathbf{n_s u_s}) + \lambda \mathbf{n_s} = \mathbf{0}$

 $\partial_t \, u_s + u_s \partial_x u_s + \beta_s \partial_x \phi + \gamma_s v \frac{2}{ths} n_s^{\left(\gamma_s - 2\right)} \partial_x n_s + \lambda u_s = 0$

- λ -Landau damping coefficients; γ_s -polytropic indeces; $\beta_s = \frac{z_s M_r}{z_r M_s}$
- Poisson equation: $\partial_{xx}^2 \varphi n_e + \sum_{s=\ell,h} \alpha_s n_s = 0; \quad \alpha_s = Z_s n_{0_s} / n_{0_e}$

Results of kinetic model¹ are used to close the system of fluid Equations

- $\gamma = 3$ gives best agreement between fluid and kinetic phase velocities.
- Phenomenological damping terms correspond to imaginary parts of kinetic frequencies.

¹E. A. Williams *et al.*, Phys. Plasmas <u>2</u>, 129 (1995).

Damping of fast wave increases with ion temperature

- Due to exponential dependence on damping, fast-wave SBS reflectivity decreases fast with increasing ion temperature.
- For $T_e/T_i = 5$, $\gamma/\omega_{pi} = 1.56 \times 10^{-2}$, $R_{fast} = 3\% \rightarrow IA$ wave amplitude is small \rightarrow nonlinearities are weak.

For $T_e/T_i = 10$, damping is small and fast-wave SBS reflectivity is large

• $\gamma/\omega_{pi} = 10^{-2} \Rightarrow R_{fast} = 44\%$ IA wave amplitude is large enough to be affected by nonlinear saturation.

 The two-harmonics model¹ (THM) has been extended for two-ion plasmas.

¹ J. A. Heikkinen *et al.*,

Phys. Plasmas 27, 707 (1984).

In CH plasmas slow-wave SBS reflectivity is much smaller than fast-wave SBS reflectivity

- In slow-wave protons are pushed away from carbon ions shielding ϕ and thus reducing δn_e and R_{slow} .
- For $I = 2 \times 10^{15}$ W/cm², slow-wave SBS is below threshold.
- For $I=7\times10^{15}$ W/cm², $T_e/T_i=10~\gamma\!/\omega_{pi}=10^{-2}$ and $R_{slow}=1\%.$
- Nonlinear saturation for $\delta n_h >> \delta n_c \rightarrow increase$ in δn_e .

Summary/Conclusions

We developed a model to study fast- and slow-wave SBS and how nonlinearities affect them

- Fast-wave SBS reflectivities are
 - significantly reduced by nonlinear saturation for $T_e/T_i \gtrsim 10$
 - not affected by nonlinear saturation for $T_e/T_i \lesssim 5$
- In CH plasmas, slow-wave SBS reflectivity is much lower than fast-wave SBS reflectivity.
- Slow-wave SBS reflectivities are significantly increased by nonlinear effects, but remain much smaller than fast-wave SBS.
- Application of our model to different component plasmas is underway