Improved Performance of Direct-Drive Implosions with a Laser-Shaped Adiabat

Laboratory for Laser Energetics

Orlando, FL 11–15 November 2002

V. N. Goncharov, R. Betti, T. J. B. Collins, V. Yu. Glebov, F. J. Marshall, P. W. McKenty, D. D. Meyerhofer, P. B. Radha, T. C. Sangster, and C. Stoeckl

> Laboratory for Laser Energetics University of Rochester

J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin

Plasma Fusion Science Center Massachusetts Institute of Technology

Summary

Adding a picket pulse to a shaped drive laser pulse improves the performance of spherical implosions

- A picket pulse shape has been designed that will vary the adiabat inside a CH shell.
- The absolute yield of measured fusion products increases up to a factor of 2.7, and the measured neutron yield/calculated neutron yield (YOC) improves from 3.7% to 18% when a picket pulse is used.

• Measured target compression did not decrease when the picket pulse was added.

Outline

Improved performance of direct-drive implosions with laser-shaped adiabat

- Expected adiabat profile
- X-ray measurements
- Fusion product measurements

Shaping the adiabat within the shell results in a more stable and compressible implosion

$$\alpha = \frac{P}{P_{Fermi}}$$

$$\gamma = 0.98 \sqrt{\frac{kg}{1+kL}} - 1.7 \text{ kV}_{a}$$

$$V_{a} \sim \alpha_{shell \text{ (ablation)}}^{3/5}$$

A picket pulse was added to a drive pulse that implodes a CH target on an α = 2 adiabat

Picket pulse 25 Width (FWHM) = 120 ps20 Amplitude = 0.4 of drive Intensity (TW) Position = 340 ps $\alpha = 2$ 15 before drive 10 CH[33] or [27] $\alpha = \mathbf{2P}$ 5 $D^{2}(6) ^{3}He(12)$ Ω 0.5 1.0 **D**₂(15) 0.0 1.5 2.0 -0.5 **455 μm** D₂(3) Time (ns)

The bubble height/shell thickness stays below 0.7 for the drive with the picket pulse

LILAC simulation with stability postprocessor 1.5 **Bubble height/shell thickness** $\alpha = \mathbf{2}$ 1.0 α = **2P** 0.5 0.0 1.1 1.2 1.3 1.4 1.5 1.0 Time (ns)

The adiabat at ablation interface increases from 4 to 6 when a picket is added

Simulated shell trajectories agree with experimental measurements for pulse shapes

X-ray microscope data show a larger emission region when a picket is used

E11910

The neutron burn rate increases when a picket pulse is added to the drive pulse

LLE

Both the experimental yield and the normalized yield increase when a picket pulse is used

The picket increases the yield from D³He reactions and maintains compressibility

Measured ion temperature is unaffected by pulse shape

A new picket pulse shape was designed for the 27-µm-thick targets

Density and adiabat profiles for 27-µm shells with and without picket

Summary/Conclusions

Adding a picket pulse to a shaped drive laser pulse improves the performance of spherical implosions

- A picket pulse shape has been designed that will vary the adiabat inside a CH shell.
- The absolute yield of measured fusion products increases up to a factor of 2.7, and the measured neutron yield/calculated neutron yield (YOC) improves from 3.7% to 18% when a picket pulse is used.

- Measured target compression did not decrease when the picket pulse was added.
- Experiments are being done with thinner CH shells