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A 2-D hydrodynamic Eulerian code has been developed
and tested on simulations of cryogenic target implosions

∑ The code is developed as an Eulerian option for the Lagrangian 2-D code
DRACO.

∑ Results of test simulations have shown good agreement with both results
of the 1-D code LILAC and predictions of the linear theory of ablative
Rayleigh–Taylor instability.

∑ The code has an advantage in the simulation of highly distorted
flows in 2-D.

∑ Simulations of cryogenic OMEGA targets were conducted for different
shapes of laser pulses and imprints, and for different surface perturbations
of the target. The effects of these factors on neutron yield were studied.

Summary
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A sparse numerical grid allows a significant increase
timestep in spherical implosion simulations

Conventional spherical grid Sparse spherical grid

Typical grids: N = 8 ; NR = 300 ; Nq = 512 (low resolution)
N = 9 ; NR = 600 ; Nq = 1024 (high resolution)

Dtsparse = 2N–1 Dtconv        (N is the number of subgrids)

Courant condition for the time step: Dt � (D is the gride size)
D

cs + ΩvΩ
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The code is based on the piecewise-parabolic-
interpolation Godunoz-type scheme (PPM)

Hydrodynamic equations in conservative form:

The code includes the essential physics:
– two-temperature ion-electron plasma
– thermal and radiative transports
– ion viscosity
– laser energy deposition
– selected nuclei reactions
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The stabilizing effect of the laser prepulse was
tested on the “all-DT,” a = 3  OMEGA target design

DT ice
89 mm

DT
vapor

Two laser pulse shapes were considered.
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Simulations demonstrate improved stability
of the targets with the laser prepulse
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Neutron yield is decreased in the
Rayleigh–Taylor unstable targets

No Prepulse With Prepulse

Models Neutron Neutron
yield (1014) YOC yield (1014) YOC

1-D run 2.35 – 0.922 –

DPP only 0.164 0.070 0.862 0.935

DPP + SSD + PS 0.507 0.216 0.899 0.975
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Target displacement results in nonuniform implosions
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Simulations show the strong effect of target displacement
on neutron yield and measured rR
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Cryo exps
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Large inner-ice-surface roughness distorts targets
and reduces neutron yield
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A 2-D hydrodynamic Eulerian code has been developed
and tested on simulations of cryogenic target implosions

Summary/Conclusions

∑ The code has demonstrated a good ability to simulate ICF problems
under a wide variation of conditions.

∑ Simulations of cryogenic OMEGA targets have demonstrated
improved stability of the low-adiabat implosions with a laser prepulse.

∑ Large inner-ice-surface roughness of the cryo targets and large laser
power imbalance or target shift result in distortion of the targets
at peak compression and significant reduction of neutron yield.


