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1-D modeling of a cryogenic, all-DT ignition
capsule approximates the expected modifications
of ignition by mix at the hot-spot surface

Summary

• The mix model includes the transport of target constituents, thermal
energy, momentum, and turbulent energy within the mix region.

• Applying this model to an all-DT ignition capsule shows familiar
mix effects on gain, the size of the hot spot, and their sensitivity
to the known perturbation sources.

• The results of 2-D hydrodyamic simulation can be approximated
reasonably well, considering the simplicity and economy of the
1-D model.
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Outline

• The diffusive in-line mix model in LILAC

• Modification of pre-ignition conditions

• Consistency with 2-D simulations

• Application: gain sensitivity

• Conclusions
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The mix model treats mix as a diffusion transport
mechanism within the 1-D hydrocode LILAC

• Mix regions evolve from initial surface and drive perturbations according
to the saturable multimode perturbation model of Haan.1

• Perturbation growth rates are obtained from the Betti formula2 for
the ablation surface and from a variational method3 for the vapor-ice
interface with ablative stabilization at both surfaces.

• Mix transport is modeled as diffusion based on a diffusion coefficient
obtained from the perturbation spectrum

• The hydrodynamic model includes turbulent pressure and viscosity
PT and QT.4

1. S. W. Haan, Phys. Rev. A 39, 5812 (1989).
2. R. Betti et al., Phys. Plasmas 5, 1446 (1998).
3. K. O. Mikaelian, Phys. Rev., A 33, 1216 (1986).
4. C. E. Leith, UCRL-96036 (1986).
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Mix motion energy is computed as turbulent
energy in a “k-l” model

• Turbulent energy density k:

(bq = 1.0)

• Buoyant force as source of k:

S = max (bm = 0.7)

• Dissipation rate:

(ce = 0.09)

• Evolution:

(bk = 0.715)

(be = 0.9)
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Mix-enhanced thermal transport reduces ignition yield
by reducing the size and temperature of the hot spot

1.5 MJ, a = 3
Gain: 45
Yield: 2.5 ¥ 1019

rrpeak: 1300 mg/cm2

·TiÒn: 30 keV
Hot-spot CR: 29

Peak IFAR: 60

1.69 mm

1.35 mm

CH

DT ice

DT
gas

R. Town, LLE Review 79, 121 (1999).
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Gain reduction depends on an effective nonuniformity of
the ice/vapor interface, similar to 2-D simulation results

Mix model
2-D simulations
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As expected, mix transport delays ignition
and reduces the implosion energy margin
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The sensitivity of the gain to variations in the perturbation
sources indicates their relative importance

Gain versus s Gain versus multiplier

0

10

20

30

40

50

1.8 1.9 2.0 2.1 2.2 2.3

s (mm)

0.0 0.5 1.0 1.5 2.0

Perturbation multiplier

G
ai

n

Ice roughness 2-mm ¥ (l–0.75)
Beam imbalance 3%
Outer roughness “NIF standard”
Imprint, 1-THz, 1-color cycle, SSD

s2 = 0.06sl<10
2 + sl≥10

2



TC6081

1-D modeling of a cryogenic, all-DT ignition
capsule approximates the expected modifications
of ignition by mix at the hot-spot surface

Summary/Conclusions

• The mix model includes the transport of target constituents, thermal
energy, momentum, and turbulent energy within the mix region.

• Applying this model to an all-DT ignition capsule shows familiar
mix effects on gain, the size of the hot spot, and their sensitivity
to the known perturbation sources.

• The results of 2-D hydrodyamic simulation can be approximated
reasonably well, considering the simplicity and economy of the
1-D model.




