OMEGA Direct-Drive Cryogenic Target Physics

R. P. J. Town University of Rochester Laboratory for Laser Energetics 43rd Annual Meeting of the American Physical Society Division of Plasma Physics Long Beach, CA 29 October–2 November 2001

UR LLE

J. A. Delettrez, R. Epstein, V. N. Goncharov, R. L. McCrory, P. W. McKenty, P. B. Radha, S. Skupsky, V. Yu. Glebov, D. R. Harding, D. D. Meyerhofer, F. J. Marshall, S. P. Regan, W. Seka, V. A. Smalyuk, C. Stoeckl, J. M. Soures, M. D. Wittman, and J. D. Zuegel

> University of Rochester Laboratory for Laser Energetics

C. K. Li, R. D. Petrasso, and F. H. Séguin

Plasma Science and Fusion Center Massachusetts Institute of Technology Summary

The OMEGA cryogenic target campaign is an important stepping stone to direct-drive ignition on the NIF

- The OMEGA cryogenic targets are energy-scaled versions of the direct-drive ignition targets.
- The OMEGA design's smaller hot spot makes OMEGA designs more sensitive to nonuniformity than NIF designs.
- The first 60-beam cryogenic implosions campaign with higher-adiabat pulses have achieved 30% of 1-D yields.

The base-line direct-drive ignition target is a thick DT-ice layer enclosed by a thin CH shell

• Target designs are characterized by the isentrope parameter α :

α = Electron pressure Fermi-degenerate pressure

	1.5 MJ, α = 3
Gain	45
Yield	$\textbf{2.5}\times\textbf{10^{19}}$
ρ R_{peak}	1.3 g/cm ²
<t<sub>i>_n</t<sub>	30 keV
Hot-spot CR	28
Peak IFAR	60

OMEGA cryogenic targets are energy scaled from NIF ignition targets

The OMEGA design's smaller hot spot leads to a greater reduction in performance than the NIF design

• 2-D ORCHID calculations have shown that the NIF gain and OMEGA yield can be related to $\overline{\sigma}^2 = 0.06 \sigma_{\ell}^2 < 10^{+} \sigma_{\ell}^2 \ge 10^{-1}$.

*Goncharov et al, Proceedings of IFSA 1999.

Current OMEGA cryogenic targets use D₂-ice layers

Near-term cryogenic experiments use a higher-adiabat laser pulse

Pulse	ρ R_{peak} (mg/cm²)	Yield	
1-ns square	43	1.0 × 10 ¹¹	
Ramp-to-flat	61	$1.2 imes 10^{11}$	
α = 3	212	8.8 × 10 ¹¹	

2-D DRACO calculations with inner ice roughness show a range of areal densities

Cryogenic implosions on OMEGA have shown 30% of 1-D yields

σ_{rms} = 19 μ m		$\sigma_{rms} = 9 \ \mu n$	١	
)			100 µm
Shot 24089		Shot 24096		
	1-D	24089	24096	
Roughness (µm)	_	~ 19	~ 9	
Yield	$1.0 imes 10^{11}$	1.26 × 10 ¹⁰	$3.0 imes10^{10}$	
YOC	_	16 %	30 %	
$\langle \rho \mathbf{R} \rangle_{\text{total}} \text{ (mg/cm}^2)$	40	20 - 30 - 58	12 - 25 - 38	
Tion (keV)	2.1	2.9±0.5	3.5±0.5	
Bang time (ns)	1.8	1.8±0.1	1.7±0.1	

F. Seguin et al., FO2.004

Summary/Conclusion

The OMEGA cryogenic target campaign is an important stepping stone to direct-drive ignition on the NIF

- The OMEGA cryogenic targets are energy-scaled versions of the direct-drive ignition targets.
- The OMEGA design's smaller hot spot makes OMEGA designs more sensitive to nonuniformity than NIF designs.
- The first 60-beam cryogenic implosions campaign with higher-adiabat pulses have achieved 30% of 1-D yields.