Fokker—Planck Calculation of ICF Implosions
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Summary

We have developed a 1-D Fokker—Planck Code
and combined it with the 1-D hydrodynamic code LILAC

LLE

« For CH implosions, comparison of Fokker—Planck (FP)
with flux-limited Spitzer—Harm (SH) diffusions shows that

— the flux inhibition factor is time dependent

— with FP, the laser absorption is higher than with SH due
to a longer density scale length at the critical surface

— in the acceleration phase, FP gives a density-scale length
at the ablation surface 509% longer than SH

— FP gives good agreement with the experimental bang time.
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FP Code Equations

The distribution function is expanded
in Legendre modes to second-order
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f(z, 3, t) = fg + f;c08(6,) + f2{3c0s2(6,) — 1}/2

The Fokker—Planck equations for fy, f{, and fo are calculated
with e-i and e-e collisions.

For closure, a simplified f3 equation is used.
The electric field is calculated based on the current free condition.

ATe and Ang are calculated from the hydrodynamics
equations without V.qg
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Teff = j: v*Hgdv is computed from FP using AT, and An,

as source terms.



In the FP calculation the flux inhibition
factor (f = qep/qEg) is time dependent
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« Quantities measured at the critical surface
— MAp: electron mean free path for 90° collision scattering

oT,
— L: electron temperature scale lengthL=L1e = Te/ =2
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To match the flux-limited SH flux with FP,
the flux limiter should be changed in time
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dFp = Min (fqFg, dsH)
f: flux-inhibition factor

drg: Free-streaming flux

drs = NeTetth
1

T. |2
Oth = [_e)
Mg

dgH: Spitzer-Harm flux

Absorbed laser power-
averaged flux limiter

In: Absorbed laser power

The inhibition factor is larger early in the pulse.




Early in the pulse, FP gives a large density
scale length at the critical surface than SH
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The larger early L. in the FP case gives rise
to a larger absorption fraction than in the SH case.
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FP gives a large laser absorption early in the pulse and
results in an increase of the total laser absorption fraction
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During the acceleration phase, FP gives
a relatively low value for the mass ablation rate
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Time-averaged values over
the acceleration phase

FP | SH
Ablation density 3.06 | 3.77
<pa> (g/cm3)
Ablation velocity 109 4.01 | 3.99
<Vgo> (cm/s)
Minimum density gradient | 1.31 | 0.83
scale length <L ;> (um)
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The early large mass ablation rate causes
the large scale length in the FP case.




For the 1-ns square pulse, both the SH f = 0.07 and
FP show good agreement with experimental results
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From FP, (f) = 0.075




For the 400-ps square pulse, the FP bang time coincides
with SH f = 0.09 case, confirming that a larger flux limiter
Is heeded for the short pulse
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Conclusions
We have developed a 1-D Fokker—Planck code and
combined it with the 1-D hydrodynamic code LILAC
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« For CH implosions, comparison of FP with the flux-limited SH model
— The flux inhibition factor is time dependent.

— With FP, the laser absorption is higher than with SH due
to a longer density scale length at the critical surface.

— In the acceleration phase, FP gives a density-scale length
at the ablation surface 50% longer than SH.

— FP gives good agreement with the experimental bang time.

— Calculations for cryogenic targets with shaped pulses are planned.
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