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Abstract

We are studying inhomogenieties in SiO2 aerogel. The aerogel has been
treated in our hydrodynamic simulations as a material with uniform density
but is modeled to grow by diffusion-limited cluster-cluster aggregation (DLCA)
during the sol-gel process. We have modified DLCA C++ code to grow a SiO2
aerogel model to be used as input in established hydrodynamic code in order
to calculate the propagation of a converging conical shock wave through the
foam. The foam has an average density of 100 mg/cm3 and consists of roughly
spherical globules of silicon-dioxide molecules with an average radius of
110±8 nm. This foam is being tested for plasma jet experiments relevant to
astrophysics wherein a conical shock wave propagating through the foam is
driven by one to six OMEGA laser beams. Fluid downstream of the shock
wave is forced through an aperture to create a plasma jet imaged by self-
emission and silicon x-ray absorption.
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Astronomical plasma jets are ubiquitous

• Low-density materials are required to simulate scale-independent
astronomical conditions.

• Astrophysical jet experiments offer a unique opportunity to bridge
the gap between astrophysical theory, simulation, and observations
of a variety of scale-independent, shock-driven plasma jet morphologies.

• The flexibility of the OMEGA laser targets and diagnostics allows
for the exploration of the relevant parameter space.

• The properties of the materials for these experiments are not
well established.

• Foams are potentially useful in a number of other experiments
and applications.
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Young and old galaxies exhibit jets

This very distant quasar is the core
of an active galactic nucleus.

This is a nearby giant elliptical
galaxy of the most highly
evolved class, E0.
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Jets are part of stellar birth

Jets from young stars show a range of jet sizes
and morphologies; each scale bar is 1000 AU.
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Jets occur upon the death of average
and massive stars

The Crab Nebula has a pulsar
emitting jet of particles at
nearly the speed of light.
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The “twin jet” nebula
M2-9 is a typical butterfly
morphology Planetary Nebula.
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OMEGA astrophysical jet experiments are designed to
study pulsed outflows relevant to planetary nebulae
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The first experiments on OMEGA studied
the convergent stock targets
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Outflows can be simulated
with a variety of target configurations

Incident laser beams

Convergent–divergent
flow through nozzle

Mach # > 1

Convergent flow
through nozzle

Mach # = 1

Convergent
shock waves

Mach # < 1

= SiO2
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Properties of target materials must be
established in order to design experiments

• The first attempts to create a jet were imaged too early
in time because the velocity of the shock through
the aerogel was overestimated.

• One cannot assume a uniform density for aerogel
in simulations.

• Some laser energy will go into homogenizing the aerogel
rather than producing a shock.
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Rendered DLCA output can be compared
to observed aerogel properties

• Small scale

– the average size of a particle

– the distribution of particle sizes

• Large scale

– the pore size and spacing

– the fractal dimensions
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DLCA code simulates the sol-gel
process by means of fractal growth

• A bounding box with a given number of particles is specified.

• During polymerization, the particles move about
the box via brownian motion.

• During gelation, the particles clump when they get close.

• During supercritical drying, the particles and clumps stick together.
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SEM images of SiO2 aerogel were taken
at three magnifications
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The structure of the simulated data
is comparable to the SEM image

Scanning electron
microscope image

Close-up of POV-Ray 3.1 rendering
of 1000 spheres generated

by DLCA code

× 100,000

200 nm
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DCLA input parameters are determined
by fitting circles to a SEM image

Mean radius = 110.27 nm
Standard deviation = 7.64 nm

Mean radius = 109.7 nm
Standard deviation = 8.0 nm
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Future work will refine the modeling of foam and make
use of foam parameters in hydrodynamic simulations

• Compare log normal distribution of particle radii to Gaussian distribution.

• Measure fractal dimensions of this aerogel and adjust Brownian motion
parameter of DLCA code to reflect these.

• Perform similar analyses of CH foam and other foams used
in experiments.

• Input circles/spheres into Adaptive Mesh Refinement code
and hydrodynamic simulations of shocks propagating in media
to examine homogenization, ionization, etc.

• Use foam in OMEGA laser targets to form small-scale astrophysical
plasma jets.

• Use aerogels and foams in EOS and RTI experiments.
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