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OMEGA cryogenic targets have shown 30% of 1-D yields

E11303

Summary

• The technology to fill, layer, characterize, and shoot direct-drive
cryogenic targets has been validated.

• Five thin-walled (~ 3 µm CH) cryogenic targets with an ice layer of
80 to 100 µm (three of them adequately characterized) have been shot
during a two-week campaign.

• The targets have shown up to 30% of 1-D yield and 60% of 1-D areal
densities with ~ 9 µm rms inner-ice-surface nonuniformity.

• Layering studies after the experimental campaign have demonstrated
~ 3 µm rms inner-ice-surface roughness, with a design goal of 1 µm.

• These initial results are encouraging for future direct-drive cryogenic
implosions on OMEGA and the NIF.
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Cryogenic targets are essential to achieve ignition
and gain in direct drive inertial confinement fusion
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The advantages of using cryogenic DT for the fuel and the ablator are:

• It reduces the laser requirements to achive a high areal density
compressed core because of the high initial fuel density
(1000× gas density)

• It reduces the Rayleigh–Taylor growth rates at the ablation surface
during the acceleration phase due to its higher ablation velocity

• It eliminates the radiative cooling from the mixing of high Z-material
into the fuel during the deceleration phase



• Target designs are characterized by the isentrope parameter α:
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The NIF base-line direct-drive ignition target is
a thick DT-ice layer enclosed by a thin CH shell

Laser energy

Pulse shape

Gain

Yield

ρRpeak
<Ti>n
Hot-spot CR

Peak IFAR

1.5 MJ

α = 3

45

2.5 × 1019

1.3 g/cm2

30 keV

28

60

CH

Electron pressure

Fermi-degenerate pressure
α  =

1.35 mm

1.69 mm

DT ice

DT gas



E11251

OMEGA cryogenic targets are energy scaled from the NIF
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NIF-ignition and OMEGA-scaled
DT targets have similar 1-D behavior

• Contours of d(ln P)/dr
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Stability analysis* of the α = 3 LLE design shows that
the NIF targets are more stable than OMEGA targets

Ice-surface roughness = 1 µm, σ ~ l–1.5

Outer-surface roughness = 840 Å
Imprint with 2-D SSD at 1-THz and polarization smoothing
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Current OMEGA cryogenic targets use D2-ice layers

• CH thickness ~ 3 µm
(design goal:  1 µm)

• Ice roughness ~ 9 µm
(design goal:  1 µm)
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The targets must be transported, layered,
characterized, and shot at temperatures below 18.7 K
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The layered cryogenic targets are characterized
using a shadow graphic technique
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The nonuniformity spectrum of the inner ice surface is
obtained by unfolding the shadowgraphic image
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Multiple views of the target are obtained with static
x-ray pinhole cameras and KB microscopes

σrms = 19 µm, 16% YOC
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Multiple views of the target are obtained with static
x-ray pinhole cameras and KB microscopes
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The performance of the target depends
on the inner ice surface nonuniformity
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The mode structure of the inner ice surface translates
into the shape of the compressed core
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High-energy particles from primary and secondary nuclear
reactions are used to diagnose the compressed core
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Neutron and particle diagnostics are used to
measure yields, ion temperature, and areal density
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1-D 24089 24096

Roughness (µm) 19 9

Neutron yield 1.0 × 1011 (1.26±0.1) × 1010 (3.5±0.1) × 1010

Bang time (ns) 1.8 1.8±0.1 1.7±0.1

�Ti�n (keV) 2.1 2.9±0.5 3.5±0.5

Y2p/Yn 1.2 × 10–3 (0.6±0.1) × 10–3 (0.8±0.1) × 10–3

Y2n/Yn 9.0 × 10–3 (8.0±0.4) × 10–3 (9.0±0.5) × 10–3

ρRhot (mg/cm2) >10 5±1 7±1

ρRtotal (mg/cm2) 40 20  -  30  -  58 12  -  25  -  38

MIT

F. Seguin et al., FO2.004
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2-D DRACO calculations using the measured
inner ice roughness are in progress

• 1-ns square incident
on a 100-µm D2 ice
layer with an 9-µm rms
inner ice roughness
(l < 30) gave

– 60% of 1-D yield and

– 80% of 1-D
areal density.

• Effects of power
balance and imprint
will be modeled.
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Recent layering studies have produced D2 layers
with a inner-ice-surface nonuniformity of ~ 3 µm rms

• The first cryogenic campaign had ice layers with σrms ~ 9 µm.

• Layering studies performed after the experimental campaign
have shown improved layer quality.

• The design goal is σrms < 1 µm (l � 50).
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Near term cryogenic experiments with D2 ice layers
will use lower-adiabat laser pulses
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OMEGA cryogenic targets have shown 30% of 1-D yields
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Summary/Conclusion

• The technology to fill, layer, characterize, and shoot direct-drive
cryogenic targets has been validated.

• Five thin-walled (~ 3 µm CH) cryogenic targets with an ice layer of
80 to 100 µm (three of them adequately characterized) have been shot
during a two-week campaign.

• The targets have shown up to 30% of 1-D yield and 60% of 1-D areal
densities with ~ 9 µm rms inner-ice-surface nonuniformity.

• Layering studies after the experimental campaign have demonstrated
~ 3 µm rms inner-ice-surface roughness, with a design goal of 1 µm.

• These initial results are encouraging for future direct-drive cryogenic
implosions on OMEGA and the NIF.


