Deceleration Phase Rayleigh–Taylor Instability in Spherical Implosions

Calculated convergence ratio

V. A. Smalyuk, J. A. Delettrez, V. N. Goncharov, F. J. Marshall, D. D. Meyerhofer, S. P. Regan, and B. Yaakobi Laboratory for Laser Energetics University of Rochester

43rd Annual Meeting of the American Physical Society Division of Plasma Physics Long Beach, CA 29 October–2 November 2001

Summary

The growth of inner-shell modulations has been measured in the deceleration phase of spherical implosions

- Spherical targets with convergence ratios of 20, 41, and 46 have been studied.
- Inner-shell modulations grow throughout the deceleration phase of spherical implosions.
- At peak compression, measured nonuniformity levels are 23%, 36%, and 53% for convergence ratios 20, 41, and 46, respectively.
- Implosions with 1-THz SSD and PS perform slightly better than those with three-color-cycle, 0.35-THz SSD and PS (23% versus 31% at peak compression).

Three types of targets were used in these experiments

- The Ti-doped layer is offset by 1 μm of CH from the inner surface.
- All three types of targets were shot with one-color-cycle, 1-THz SSD.
- The first target type was also shot with three-color-cycle, 0.35-THz SSD and PS.

Shell-Integrity Measurements

X-ray framing cameras are the primary diagnostics of shell nonuniformity

LLE

The ratio of images above and below the *K* edge is related to areal-density modulations in the shell

Measured spectra contain information about shell-areal-density evolution

Measured shell areal density increases with compression and decreases with decompression and heating

Inner-shell modulations grow throughout the implosion's deceleration phase

At peak compression more-unstable implosions have higher shell-modulation levels

Peak compression Wavelength (µm) 50 25 50 25 50 25 Power per mode of $\frac{\delta(\rho r)}{\rho}$ ρ $\sigma_{rms} = 23\%$ $\sigma_{rms} = 36\%$ ^σrms = 53% 0.06 0.04 0.02 0.00 20 40 60 20 40 60 20 40 60 0 0 0 Spatial frequency (mm⁻¹) Convergence Convergence Convergence ratio = 20ratio = 41ratio = 46

At peak compression, implosions with three color cycles, 0.35-THz SSD have slightly higher nonuniformity levels than those with one color cycle, 1-THz SSD

The shell-modulation level is higher with a higher convergence ratio in the deceleration phase of spherical implosions

Summary/Conclusions

The growth of inner-shell modulations has been measured in the deceleration phase of spherical implosions

- Spherical targets with convergence ratios of 20, 41, and 46 have been studied.
- Inner-shell modulations grow throughout the deceleration phase of spherical implosions.
- At peak compression, measured nonuniformity levels are 23%, 36%, and 53% for convergence ratios 20, 41, and 46, respectively.
- Implosions with 1-THz SSD and PS perform slightly better than those with three-color-cycle, 0.35-THz SSD and PS (23% versus 31% at peak compression).