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Multiple-beam SBS NIF-scale plasmas
show EM-seeded SBS and early quenching

Summary

• Experiments on OMEGA at 351 nm with full beam smoothing
were carried out in plasmas relevant to NIF direct-drive implosions.

• Multiple-beam effects are dominated by EM-seeded SBS.

• SBS is quenched before the peak of the pulse
(indicative of filamentation?).

• SBS power reflectivities appear to saturate around a few percent.

• Existence of common (central) ion waves is consistent with data.
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Multiple-beam SBS interaction experiments used three
sets of delayed beams, six of them interaction beams

• Plasma density scale lengths and Te roughly correspond to NIF
direct-drive conditions.

• Full-beam smoothing (1-THz 2-D SSD and polarization smoothing)

• SBS and SRS with and without time resolution in two beams
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A 2-D simulation of OMEGA planar-foil plasma resembles
direct-drive NIF conditions at ~ 6 ns into the laser pulse

SAGE run
3198 (3.4 ns)

NIF (6.6 ns)

Solid lines: planar-foil
plasma parameters
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In NIF-scale plasmas the SBS threshold
is determined primarily by the velocity gradient
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In strongly damped plasmas the SBS gain may be
computed by integrating a local gain factor

• The equation for SBS intensity is1  
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• The simulation code SAGE is used to provide the profiles of the plasma
parameters over which the above equations are integrated.

1C. J. Randall, J. A. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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Two full-aperture backscatter stations (FABS) measure
time-integrated and time-resolved SBS and SRS backscatter
energy and spectra on OMEGA
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Multiple-beam experiments are dominated
by EM-seeded SBS backscattering
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SBS sidescattering can be EM- or ion-wave-seeded;
SBS backscattering is EM-seeded by SBS sidescattering

• SBS seeding is most effective near the sonic point (λSBS ~ 0).

• The experiments show that most of the SBS signal comes
from very close to the sonic point.

• Sidescatter ion waves are the same for all opposing pairs
of interaction beams—but they are not necessarily in the same
location in space.
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The multibeam SBS signals are dominated
by amplification of specularly reflected light

Note:  The specularly reflected light is expected
to increase with time due to heating of the plasma
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At low intensities common SBS ion waves contribute
to SBS sidescattering of BL23 (ion-wave seeding)
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Without beams 25 and 14, mostly specular
reflection from beam 23 is observed
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• This supports the notion that common
ion waves contribute to SBS sidescattering.
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Present single-beam SBS data
are consistent with older data
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Multiple-beam experiments in planar geometry are only
a rough approximation for spherical experiments

• Overlapping beams in planar targets are not exactly equivalent
to overlapping beams in spherical geometry.

♦ Energetically, seeding in planar geometry is much more efficient.

• The present experiments have approximately the right density
scale lengths but the velocity scale lengths are too short.

• Single-beam interaction experiments at perpendicular incidence
have reduced SBS seeds due to increased absorption near
the critical density

2523
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Multiple-beam SBS NIF-scale plasmas
show EM-seeded SBS and early quenching

Summary/Conclusions

• Experiments on OMEGA at 351 nm with full beam smoothing
were carried out in plasmas relevant to NIF direct-drive implosions.

• Multiple-beam effects are dominated by EM-seeded SBS.

• SBS is quenched before the peak of the pulse
(indicative of filamentation?).

• SBS power reflectivities appear to saturate around a few percent.

• Existence of common (central) ion waves is consistent with data.


