Direct-Drive Spherical Implosions of OMEGA Capsules with 3- to 15-atm Gas Fill

C. K. Li Plasma Science and Fusion Center Massachusetts Institute of Technology 43rd Annual Meeting of the American Physical Society Division of Plasma Physics Long Beach, CA 29 October–2 November 2001

F. H. Séguin, J. A. Frenje, S. Kurebayashi, and R. Petrasso*

Plasma Science and Fusion Center Massachusetts Institute of Technology

D. D. Meyerhofer, T. C. Sangster, J. M. Soures, J. Delettrez, V. Yu Glebov, P. B. Radha, S. Roberts, S. Regan, W. Seka, and C. Stoeckl

> Laboratory for Laser Energetics University of Rochester

* Visiting senior scientist at LLE

Summary

Target implosion performances and fuel–shell mix effects are studied with room-temperature, CH-shell capsules filled with D₂ and DT gas

- Recent implosions establish the dependence of target performance on gas-fill pressure from 3 to 15 atm for 20- μ m CH shells.
- Moderate convergence (CR ~ 10) is achieved for all implosions irrespective of the gas-fill pressure.
- The 15-atm capsule implosions are closer to 1-D predictions.
- More fuel-shell mix is inferred for 3-atm implosions:

3 atm:	entire core;
	\sim 0.9 μm of the original inner CH shell

15 atm: outer part of the core, \sim 0.5 μ m of the original inner CH shell

- Implosion performance of capsules with 3- to 15-atm gas fill
- Measuring the effects of fuel-shell mix on target performance
- Modeling of fuel-shell mix

The overall core performances are characterized by comparisons between the experimental data and the 1-D calculations

1-D calculated CR (@ stagnation)

Implosions of 15-atm capsules achieve ~90% of 1-D predictions for both ρR_{fuel} and ρR_{shell} , while 3-atm capsules achieve, respectively, ~25% for ρR_{fuel} and ~60% for ρR_{shell}

While 1-D simulations predict high convergence ratios for 3-atm capsule implosions (CR \sim 25), the implosions achieve \sim 45% of 1-D predicted values (CR \sim 10, similar to the 15-atm case)

CR is determined by either $\rho \textbf{R}_{\text{fuel}}$ or $\rho \textbf{R}_{\text{shell}}$ measurements:

Fuel:

$$\mathbf{CR} = \sqrt{(\rho \mathbf{R}_{\mathbf{fuel}} / \rho \mathbf{R}_{\mathbf{fi}})}$$

Shell:

$$CR = \sqrt{3(\rho \Delta R_{shell} / \rho \Delta R_{si})}$$

The ratios $(Y_{2n}/Y_{1n}, Y_{2p}/Y_{1n})$ indicate that mix is more severe for 3-atm implosions

The D³He yield increases as the gas-fill pressure decreases, indicating more mixing

Modeling of 15-atm implosions indicates that \sim 0.5 μ m of the original inner CH shell mixes into the outer part of the fuel

Modeling of 3-atm implosions indicates that ~0.9 μ m of the original inner CH shell mixes into the entire core

Summary/Conclusions

Target implosion performances and fuel–shell mix effects are studied with room-temperature, CH-shell capsules filled with D₂ and DT gas

- Recent implosions establish the dependence of target performance on gas-fill pressure from 3 to 15 atm for 20- μ m CH shells.
- Moderate convergence (CR ~ 10) is achieved for all implosions irrespective of the gas-fill pressure.
- The 15-atm capsule implosions are closer to 1-D predictions.
- More fuel-shell mix is inferred for 3-atm implosions:

3 atm:	entire core;
	\sim 0.9 μm of the original inner CH shell

15 atm: outer part of the core, \sim 0.5 μ m of the original inner CH shell

