

V. N. Goncharov, S. Skupsky, R. Betti, J. Marozas, P. McKenty, and R. Town University of Rochester Laboratory for Laser Energetics 43rd Annual Meeting of the American Physical Society Division of Plasma Physics Long Beach, CA 29 October–2 November 2001 Summary

A model has been developed to optimize NIF DD target designs

- A model has been developed to optimize target gain.
 - The model uses results of a stability postprocessor to calculate shell integrity during the acceleration phase and mode spectrum at shell stagnation.
 - Target gain is calculated by using the obtained mode spectrum and results of 1-D simulations with reduced implosion velocities.
- The model was applied to predict stability and gains for "all-DT" moderate-gain and high-gain foam target designs.
- The results of the model suggest that the maximum gain for the "all-DT" targets can be achieved for α = 3 to α = 4 designs.

The model consists of three main steps

Acceleration, coasting, and deceleration Step Instability seeding Target gain phases **Physical** Ablative RTI, Bell-Imprinting, RMI, **Burn-wave** feedout **Plesset instability** phenomena propagation Calculated by **Stability** Analytic theory, **1-D** simulations ORCHID postprocessor with reduced implosion velocity simulations

"All-DT" DD NIF targets driven on adiabat up to 7 were considered

Pressure
$$p_{kidder} = \frac{p_0}{\left[1 - (t/\tau)^2\right]^{5/2}}$$

Power $P_1 = \frac{P_0}{\left[1 - (t/\tau)^2\right]^4}$

Parameter	Determined by
P ₀	Shell adiabat
P _{max}	Damage threshold, shell stability
t ₀	Timing of compression wave and first shock
t ₁	Target gain
t _{end}	Laser energy

TC5632

"All-DT" DD NIF targets driven on adiabat up to 7 were considered (continued)

500 V_{imp} ρ**R_{peak</mark>**} 200 (g/cm²) $(\times 10^7 \text{ cm/s})$ Gain α 100 Power (TW) 2 1.5 4.17 55 50 3 1.3 4.27 48 α = 7 4 1.2 4.34 41 4.42 5 1.1 29 20 4.42 6 1.0 22 10 7 0.9 4.45 9 2 6 8 10 12 0 4 Time (ns)

A stability postprocessor¹ was applied to study perturbation evolution of imploding targets during the acceleration, coasting, and deceleration phases

¹V. Goncharov *et al.*, Phys. Plasmas <u>7</u>, 5118 (2000).

Result of the model was compared against *ORCHID* simulations

End of acceleration phase

The postprocessor was used to calculate mode spectrum at stagnation

 V_a in decel phase is calculated by using theory of R. Betti¹ et al.

 $V_a \propto \frac{\left(T_{hs}\right)^{5/2}}{R_{hs} \rho_{shell}}$

 Mode spectrum at the back surface of cold fuel at stagnation (1 THz SSD, 1 μm DT ice roughness, 800Å outer surface finish)

¹V. Lobatchev and R. Betti, Phys. Rev. Lett., <u>85</u>, 4522 (2000).

The mode spectrum at stagnation is related to the gain reduction

- According to Levedahl and Lindl¹ $\frac{V_{mix}}{V_0} = \left(\frac{r_0}{r_{mix}}\right)^{2/5} \quad r_{mix} = r_0 - \eta$ $\frac{V_{mix}}{V_0} = (1 - \xi)^{-2/5} \quad \xi = \eta/r_0$ Low- ℓ modes
- Perturbation is equivalent to a reduction in 1-D implosion velocity:²

$$\xi = 1 - \left(\frac{V_0 - \Delta V}{V_0}\right)^{5/2}$$

 1W . Levedahl and J. Lindl, Nuc. Fusion 37, 165 (1997). 2Roy Kishony, Ph.D. thesis, 1999.

Gain is calculated by using the results of 1-D simulations with reduced V_{imp}

<u>UR</u>

- Target gain is calculated assuming 1-THz, 2-D SSD; 1-μm ice–DT gas roughness, and 800-Å outer surface finish.
- Imprint spectrum is assumed to be the same for different α 's.

Change in EOS results in a small variation in target gain

ξ/ξ_c of α = 5 and α = 6 can be reduced by increasing the in-flight aspect ratio

α	=	5
---	---	---

IFAR	46	56
A _{bubble} /Th (%)	17	40
٤/٤ <mark>c</mark>	62	47
1-D gain	27	27
2-D gain	12	18

Three high-gain "wetted foam" designs have been considered

Target stability and gain are calculated by using a developed model

Design	1	2
A _{bubble} /Th (%)	22	52
٤/٤ <mark>c</mark> (%)	200	72
1-D gain	124	81
2-D gain	0	55

Assumptions: (1) imprint is the same for "all-DT" designs

(2) perfect power balance

(3) 1-µm DT-ice roughness and 80-nm outer surface finish

Summary/Conclusion

A model has been developed to optimize NIF DD target designs

- A model has been developed to optimize target gain.
 - The model uses results of a stability postprocessor to calculate shell integrity during the acceleration phase and mode spectrum at shell stagnation.
 - Target gain is calculated by using the obtained mode spectrum and results of 1-D simulations with reduced implosion velocities.
- The model was applied to predict stability and gains for "all-DT" moderate-gain and high-gain foam target designs.
- The results of the model suggest that the maximum gain for the "all-DT" targets can be achieved for α = 3 to α = 4 designs.