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A model has been developed to optimize
NIF DD target designs

• A model has been developed to optimize target gain.

– The model uses results of a stability postprocessor to calculate shell
integrity during the acceleration phase and mode spectrum at shell 
stagnation.

– Target gain is calculated by using the obtained mode spectrum and
results of 1-D simulations with reduced implosion velocities.

• The model was applied to predict stability and gains for “all-DT”
moderate-gain and high-gain foam target designs.

• The results of the model suggest that the maximum gain for the “all-DT” 
targets can be achieved for α = 3 to α = 4 designs.

Summary



TC5756

The model consists of three main steps
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“All-DT” DD NIF targets driven on adiabat
up to 7 were considered
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“All-DT” DD NIF targets driven on adiabat
up to 7 were considered (continued)

ρRpeak Vimp
α (g/cm2) (× 107 cm/s) Gain

2 1.5 4.17 55
3 1.3 4.27 48
4 1.2 4.34 41
5 1.1 4.42 29
6 1.0 4.42 22
7 0.9 4.45 9
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A stability postprocessor1 was applied to study perturbation
evolution of imploding targets during the acceleration,
coasting, and deceleration phases
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Va~α3/5
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1V. Goncharov et al., Phys. Plasmas 7, 5118 (2000).
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Result of the model was compared
against ORCHID simulations

• End of acceleration phase
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The postprocessor was used to calculate
mode spectrum at stagnation
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1V. Lobatchev and R. Betti, Phys. Rev. Lett., 85, 4522 (2000).

• Va in decel phase is calculated
by using theory of R. Betti1 et al.

• Mode spectrum at the back
surface of cold fuel at stagnation
(1 THz SSD, 1 µm DT ice roughness,
800Å outer surface finish)
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The mode spectrum at stagnation
is related to the gain reduction
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• According to Levedahl and Lindl1

• Perturbation is equivalent to a reduction in 1-D implosion velocity:2

ξ = 1−
V0 − ∆V

V0







5 2

1W. Levedahl and J. Lindl, Nuc. Fusion 37, 165 (1997).
2Roy Kishony, Ph.D. thesis, 1999.
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2 5
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Gain is calculated by using the results
of 1-D simulations with reduced Vimp
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Target designs with 3 < α < 4 have the highest 2-D gain

30

25

20

15

10

5

100

80

60

40

20

2 3 4 5 6 7 2 3 4 5 6 7

G
ai

n

α
P

er
ce

n
t

α

Increased
IFARξ/ξc

Abubble/thickness

Gain(ξc) = 1

• Target gain is calculated assuming 1-THz, 2-D SSD; 1-µm
ice–DT gas roughness, and 800-Å outer surface finish.

• Imprint spectrum is assumed to be the same for different α’s.
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Change in EOS results in a small variation in target gain

α = 3 design SESAME (G = 48) TF (G = 45)
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ξ/ξc of α = 5 and α = 6 can be reduced
by increasing the in-flight aspect ratio

α = 5
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Three high-gain “wetted foam”
designs have been considered
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Target stability and gain are calculated
by using a developed model

Design

Abubble/Th (%)

ξ/ξc (%)

1-D gain

2-D gain

1

22

200
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0

2

52

72

81

55

Assumptions: (1) imprint is the same for “all-DT” designs

(2) perfect power balance

(3) 1-µm DT-ice roughness
     and 80-nm outer surface finish
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A model has been developed to optimize
NIF DD target designs

• A model has been developed to optimize target gain.

– The model uses results of a stability postprocessor to calculate shell
integrity during the acceleration phase and mode spectrum at shell 
stagnation.

– Target gain is calculated by using the obtained mode spectrum and
results of 1-D simulations with reduced implosion velocities.

• The model was applied to predict stability and gains for “all-DT”
moderate-gain and high-gain foam target designs.

• The results of the model suggest that the maximum gain for the “all-DT” 
targets can be achieved for α = 3 to α = 4 designs.

Summary/Conclusion


