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Abstract

Recent ideal MHD calculations have shown that poloidal flow in a tokamak
can result in a pedestal structure across which the velocity and pressure vary
strongly. In a low-b tokamak the effective sound speed in the poloidal direction
is the sound speed Cs scaled by the ratio of the poloidal to total magnetic
field strength, Csp = Cs(Bp/B). This is a measure of the time scale necessary
for a sound wave to propagate from the outer to the inner radial edge of the
plasma. The poloidal sound speed goes to zero at the center of the plasma
by symmetry and gets quite small near the outer radial edge. Hence, even
small poloidal rotational velocities can result in a supersonic flow. Owing to
the finite inverse aspect ratio, the toroidal geometry of the flow behaves as
a de Laval nozzle with a throat at the inner midplane. Under the right conditions,
a subsonic flow can become supersonic near the inner midplane and remain
supersonic as it completes a poloidal revolution. This in turn results in a
shock wave that propagates from the outer to the inner midplane, irreversibly
heating the plasma and generating a poloidal shear flow. We present time-
dependent numerical simulations detailing the formation and evolution of
this flow pattern and a comparison with analytic results.
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Poloidal flow generates a pedestal-like structure

• Experiments find that tokamak plasmas can rotate in the poloidal
as well as toroidal directions.

• Large velocity shear is an important ingredient for inhibiting
energy transport.

• Recent ideal MHD calculations show that poloidal flow can lead
to a pedestal-like structure.

• The relevent signal speed for a low-b plasma is the poloidal
sound speed Csp = Cs(Bp /B), where Cs is the sound speed.

• In terms of ideal MHD modes, this is � the slow-mode speed
in the poloidal direction.

• A pedestal-like structure generally forms when the poloidal velocity
is transonic, up ≥ Csp.

• This pedestal has the following properties:
– a shock-generated pressure jump,
– a transonic poloidal shear flow, and
– a toroidal shear flow.

• The poloidal flow and shock formation is an analog of a periodic,
shocked transonic de Laval nozzle.
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Betti and Freidberg (2000) recently studied
the evolution of weak poloidal shocks

• Coordinate system (r, θ, φ) and major
radius R0. Flow is assumed to be
axi-symmetric, ∂φ = 0.

• In terms of the inverse aspect ratio
(� = a/R0), Bp/Bφ ~ �, β ~ �2.

• Letting Bp = �ψ × eφ/R, it can be shown
that ψ = ψ0(r) + �ψ1(r, θ, t) + ...

• In the presence of weak shocks,
Bp ~ independent of time.

• Adjacent poloidal flux surfaces play
the role of a rigid duct with a nozzle
at the inner midplane.
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System of equations and numerical method

• We solve the equations of ideal magnetohydrodynamics using an eight-wave
formulation [Powell (1998) and Toth (2000)].

• In this approach, “magnetic charge” is advected with the fluid (the eighth wave):

• Periodically the � • B errors are cleaned with a Poisson solver.
• The equations are linearized following Roe (1981), Roe and Balsara (1996),

and Cargo and Gallice (1997).
• Integration is unsplit, using the second order accurate, TVD Runge–Kutta

method of Shu and Osher (1989).
• In 1-D the linearized system of equations retains Galilean invariance

and takes the following form:

∂q
∂t

+ Ã
∂q
∂x

= 0

∂B
∂t

+ ∇ • vB − Bv( ) = −v ∇ •B( )

∂ρv
∂t

+ ∇ • ρvv − BB( ) + ∇ P + B2 2( ) = −B ∇ • B( )

∂ρ
∂t

+ ∇ • ρv( ) = 0
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Initial conditions for a poloidally rotating plasma
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The initial conditions contain a transonic surface
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Poloidal flow develops a spiral shock
and poloidal shear flow
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The poloidal shear flow is transonic

2.0

1.5

1.0

0.5

0.0

Z

4.0 4.5 5.0 5.5 6.0

R

4 5

Poloidal Mach number
with contours

2 31

0.1

0.05

4 5 6

R

Poloidal
sound speed

Poloidal
velocity

Radial plot of the poloidal
velocity and sound speed

at z = 1.1 showing
a transonic shear flow



TC5842

Spiral shock generates a toroidal shear flow
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Evolution is similar to a de Laval nozzle
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Future studies will address long-term evolution

• Betti and Freidberg (2000) showed that weak shocks propagate
from the outer midplane to the inner midplane.

• On a long time scale the spiral shocks in figure (a) will decay
to figure (b) and ultimately (c).

• The final state is predicted to be a shockless equilibrium
with a discontinuous Mach number.
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