Measurements of Fuel and Shell Areal Densities of Imploded DT-doped H₂-Gas-Filled CD Capsules Using Scattered Protons on OMEGA

J. A. Frenje Plasma Science and Fusion Center Massachusetts Institute of Technology 43rd Annual Meeting of the American Physical Society Division of Plasma Physics Long Beach, CA 29 October–2 November 2001

C. K. Li, F. H. Séguin, S. Kurebayashi, and R. D. Petrasso*

Plasma Science and Fusion Center Massachusetts Institute of Technology

J. M. Soures, J. A. Delettrez, D. D. Meyerhofer, V. Yu. Glebov, P. B. Radha, S. Roberts, C. Stoeckl, and T. C. Sangster

> Laboratory for Laser Energetics University of Rochester

Summary

Knock-on protons from DT-doped H₂ fuel are used to infer ρ R_{fuel} and ρ R_{shell} in several directions

- A ρR_{fuel} of ~ 6.5 mg/cm² was determined indicating the same compression as standard 15-atm DT implosions* (Cr ~ 10 was measured at bang time in both cases).
- The ρR_{fuel} of DT-doped H₂ implosions is ~60% of 1-D prediction while standard 15-atm DT implosions are ~80% of 1-D prediction.
- An asymmetry in the ρR_{shell} between 55 and 75 mg/cm² is observed for DT-doped H₂ implosions.

Motivation

- Study compression performance (pR_{fuel} and Cr) using DT-doped H₂ fuel.
- Measure directional $\rho \textbf{R}_{\textbf{shell}}$ in several directions.
- Investigate the potential of using energetic deuteron breakup protons as diagnostic for high-ρR DT cryogenic implosions.
- Check knock-on deuteron data from standard DT implosions.

Outline

Measurements of ρR_{fuel} and ρR_{shell} knock-on protons from DT-doped H₂ fuel

- Principles of using knock-on protons for measurements of ρR_{fuel} and ρR_{shell}
- Experimental data
- Conclusions

Knock-on protons, knock-on deuterons, and n,2n protons are considered in these measurements

- DT fusion reaction: $D + T \rightarrow {}^{4}He + n(14.1 \text{ MeV})$
- Neutrons elastically scatter in fuel:

 $-\mathbf{n} + \mathbf{p} \rightarrow \mathbf{n}' + \mathbf{p} (\mathbf{0-14.1 \ MeV})$

Neutrons elastically scatter in shell:

 $-\mathbf{n} + \mathbf{D} \rightarrow \mathbf{n}' + \mathbf{D}'(\mathbf{0}-\mathbf{12.5} \text{ MeV})$

• n,2n reactions in shell:

 \sim n + D \rightarrow n' + n' + p(0–11.8 MeV)

Spectral measurements of knock-on protons from DTdoped H₂ fuel are used to infer ρ R_{fuel} and ρ R_{shell}

• The proton yield, in a certain energy range:

 Energy downshift of the knock-on proton spectrum:

$$<\rho R>_{total} = <\rho R>_{shell} + <\rho R>_{fuel}$$

 \uparrow
~10%

Spectral measurements of knock-on protons were performed in several directions during shot 23471

Inferred ρR_{fuel} and directional ρR_{shell} for a DT-doped H₂ implosion

- A ρR_{fuel} of ~6.5 mg/cm² was determined on the basis of the knock-on proton yields.
- An asymmetry in the ρR_{shell} between 55 and 75 mg/cm² is observed for DT-doped H_2 implosions.

Comparison with 15-atm standard DT implosions indicates the same compression performance

Summary/Conclusions

Knock-on protons from DT-doped H₂ fuel are used to infer ρR_{fuel} and ρR_{shell} in several directions

- A ρR_{fuel} of ~ 6.5 mg/cm² was determined indicating the same compression as standard 15-atm DT implosions* (Cr ~ 10 was measured at bang time in both cases).
- The ρR_{fuel} of DT-doped H₂ implosions is ~60% of 1-D prediction while standard 15-atm DT implosions are ~80% of 1-D prediction.
- An asymmetry in the $\,\rho {\rm \textbf{R}_{shell}}$ between 55 and 75 mg/cm^2 is observed for DT-doped H_2 implosions.

