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The high-gain wetted-foam design has almost double
the gain, and similar stability as of the “all-DT” design

TC5786

• The foam increases absorption and reduces radiative preheat.

• The density fluctuations in the foam result in surface nonuniformities.

• Simulations of bare-DT targets show surface amplitudes ~ 10 nm
for wavelengths ≤ 10 µm.

Summary



High-gain wetted-foam design

TC5781

• Reasons the increased gain

• Effects of foam-density inhomogeneities

Outline



TC5787

Wetted-foam targets have higher laser absorption
and more fuel, resulting in higher target gain

• If the foam is replaced by DT and the absorption is increased, the gain remains 81.

• The foams also protects the fuel from preheat due to radiation from the CH.

• Foams have been used previously to selectively radiatively preheat the ablator.1
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A preliminary analysis shows similar hydrodynamic stability
during acceleration for the “wetted foam” and “all-DT”
designs (1.5 MJ)

TC5610a

Assumptions:
• “Wetted foam” has the same laser imprint as the “all-DT” design (1 THz).
• “Wetted foam” is treated as a homogeneous mixture.
• Inner-surface roughness = 1 µm.
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Different wetted-foam designs are being examined for NIF

1.5-MJ Wetted-Foam Designs

Foam (mg/cm3)

Gain

Absorption (%)

ρR (g/cm2)

Adiabat

Margin

Velocity (cm/s)

1

140

81

90

1.4

2.5

48

4.0 × 107

2

30

120

85

1.7

2.0

32

3.2 × 107

Higher gain,
less stable

DT

DT
vapor

CH (DT)20 170

280

Lower gain,
more stable

1784

132
DT

DT
vapor

3 µm CH

CH (DT)4

1368

281

3 µm CH

1475
1928



The foam also protects the fuel from radiative preheat

TC5782

• The inner edge of the shell
expands into the fill in the
absence of foam protection
from radiative preheat.

• When the main shock passes
down this density gradient, it is
strengthened and moves faster.

• The thicker shell of the higher-
gain design requires shielding
from radiative preheat for
successful shock/shell timing.
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Shocks passing through foam result in turbulence,
and short-term under-compression

TC5784

• A shock in foam causes fluctuations in velocity, pressure, etc.,
and a modified shock speed1.

• These fluctuations weaken the shock, reducing the post-shock
average pressure and density.

• The fluctuations decrease in time << shock propagation time.

1 G. Hazak et al., Phys. Plasmas 5, 4357 (1998).



The spectrum of density fluctuations
for fibrous foams wetted with DT

TC5783

• The 2-D Fourier transorm of a wetted foam was calculated
(for a box size of L = 10 µm).

• The spectrum is relatively flat for low mode numbers.
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Foam inhomogeneities produce surface nonuniformities

TC5785

• A single mode with λ = 10 µm (NIF: l ~ 1120; OMEGA: l ~ 370) of
the foam density fluctuations was imposed on a foam target.

• The surface nonuniformity during shock transit has an
amplitude ~ 10 nm.

• The ablative stabilization cutoff for DT is 10 µm.

• The growth remains linear, not spreading to longer wavelengths.
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Fiber-resolved simulations are needed

TC5852 G. Hazak et al., Phys. Plasmas 5, 4357 (1998).

• Previous studies1 have modeled the hydrodynamics of shock
propagation in a wetted foam.

• Simulations underway with fiber-scale resolution of wetted foams
will determine the resulting surface nonuniformities.



The high-gain wetted-foam design has almost double
the gain, and similar stability as of the “all-DT” design

TC5786

• The foam increases absorption and reduces radiative preheat.

• The density fluctuations in the foam result in surface nonuniformities.

• Simulations of bare-DT targets show surface amplitudes ~ 10 nm
for wavelengths ≤ 10 µm.

Summary/Conclusions


