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Mass ablation off the shell into the hot spot changes
the classical picture of ICF ignition and deceleration-
phase RT instability

Outline

TC5762

• Hot-spot hydrodynamics

• Ablative stabilization of the deceleration-phase
Rayleigh–Taylor instability

• Shell hydrodynamics and marginal ignition



Three regions of the capsule can be identified:
the hot spot, the shocked shell, and the free-fall shell
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The hot spot



The model for the hot spot assumes subsonic flow,
�σv� proportional to T2, and local alpha deposition
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The heat flux leaving the hot spot is recycled into
the hot spot by mass ablation.  In the absence of alpha
heating, the hot spot is adiabatic
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Ablation produces a characteristic
“bump” in the hot-spot velocity profile
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Hot-spot profiles

R. Betti et al., in press in Physics of Plasmas (Dec. 2001)

T ≈ T0 t( )
1−

)
r2( )2 5

1− 0.15
)
r2

Va>0

Va=0

–20 ps

–10 ps –10 ps

–20 ps

–70 ps

)
r = r

R

•

• •
V

R
≈ r − χ

)
r( ) ρshell t( )

ρhs
)
r,t( )

Va t( )
R

Time from
stagnation

−

V

R

Theory
0

–1

–2

–3
0.0 0.2 0.4 0.6 0.8 1.0

r/R

Simulations

0 20 40 60 80

r (µm)



The hot-spot mass increases
due to mass ablation off the shell
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For a direct-drive NIF capsule, the ablation velocity varies
between 12 and 30 µm/ns during the 200-ps interval
before stagnation
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Two-dimensional high-resolution simulations confirm
the theoretical results for direct drive NIF capsules
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V. Lobatchev and R. Betti, Phys. Rev. Lett. (2000).
Betti and Goncharov, Phys. Plasmas (1998).
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Two-dimensional simulations show that the stabilizing
effect of hot-spot ablation significantly reduces the
deceleration RT growth well into the nonlinear regime
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1-D shell
hydrodynamics

and
marginal ignition



Traditional ignition models consider the hot spot mass
as constant, neglect the confinement action of the shell,
and treat heat conduction as an energy loss

TC5771

• Traditional model of ignition uses the stagnation energy balance

Mhs T ~ Wα – Wconduction – Wexpansion/no shell – Wradiation

• Ignition requires T > 7 to 10 keV, ρR > 0.2 to 0.3      T > 0

• Hot-spot energy equation in the presence of ablation:

• The relation between P and R is determined by the shell.

•

•••• •

Alpha heating Decompression cooling if R > 0;
PdV work if R < 0

•

•

•d
dt

PR3( ) = 5
3

DαP2R3 − 2PR2R



The simplest shell model is described
by an incompressible shell
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• Shell Newton’s law

• Hot-spot energy equation

Alpha heating Decompression cooling if R > 0;
PdV work if R < 0

•

•

•

Ignition requires alpha heating > decompression cooling
right after stagnation.

• •

∆<<R∆

d
dt

PR3( ) = 5
3

DαP2R3 − 2PR2R

MshellR = 4πPR2
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If the temperature stays above ~7 keV where �σv�~T2,
ignition is not affected by heat-conduction losses
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• Heat-conduction losses are recycled by mass ablation into the
hot spot and do not change the hot-spot pressure.

• If Taverage > 7 keV, then �σv� ~ T2 and the fusion rate depends only on P:

n2 �σv�~n2T2~P2

• Ignition is not affected by heat losses.  The only energy loss is
decompression cooling tamped by the heavy shell.

ρ

T
P



The shell inertia determines the ignition of the hot spot
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The heavy shell recycles the heat-
conduction losses through ablation
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The ignition condition from the coupled hot spot–shell
model shows a threshold in kinetic energy
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Ek = shell kinetic energy

ρsh
0 = shell density

Ash
0 = shell aspect ratio

Vimp = shell implosion velocity

Psh (0) = hot-spot pressure

at the beginning of the deceleration phase
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Ignition with minimum kinetic energy requires that
the return shock be on the outer shell surface at stagnation
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The hydrodynamics of the shocked part of the shell and
hot spot is described by four coupled ODE’s
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The condition of minimum energy required
for ignition leads to simple relations between
stagnation and initial values
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Minimum energy required for ignition depends
on the shell adiabat and the implosion velocity
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Current model Herrmann, Lindl, Tabak: LASNEX code

Herrman et al., Nucl. Fusion 41, 99 (2001).
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Other scaling laws show similar trends though
the physics is quite different
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Basko, analytical (including heat losses) + DEIRA code

Kemp, Meyer-ter-Vehn, Atzeni (self-similar return shock)

Basko et al., Nucl. Fusion 35, 87 (1995);
Kemp, Meyer-ter-Vehn, Atzeni et al., Phys. Rev. Lett. 86, 3336 (2001).
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The stagnation ρR indicates that the α particles
are confined within the hot spot
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Alpha heating > decompression cooling

Local alpha deposition

Basko et al., Nucl. Fusion 35, 87 (1995);
Kemp, Meyer-ter-Vehn, Atzeni et al., Phys. Rev. Lett. 86, 3336 (2001).
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Mass ablation off the shell into the hot spot changes
the classical picture of ICF ignition and deceleration-
phase RT instability

TC5834

• Balancing the alpha heating and the decompression cooling (including
the shell inertia) seems to explain the LASNEX marginal ignition scaling.

• The heat losses do not enter into the stagnation hot-spot energy balance
as they are recycled into the hot-spot by mass ablation off the shell
(as long as �σv�∼T2).

• The conduction losses determine only the implosion velocity required
to enter into the regime where �σv�∼T2.

• Mass ablation off the shell leads to a cutoff in the spectrum of the
deceleration-phase Rayleigh–Taylor instability.  For a direct-drive NIF-
like capsule, the cutoff wave number occurs at l ≈ 90.


