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Abstract

A two-dimensional hydrodynamic code is employed to describe the implosion
of a NIF-like ICF capsule beginning from the free-fall phase to determine its
energy gain. Data are taken from one-dimensional code LILAC at the end of
the acceleration phase, and single- or multimode perturbations are then
introduced in the inner shell surface. The data are then input into a two-
dimensional hydrodynamic code employing a uniformly moving mesh, the
motion of which is determined by the trajectory of the capsule shell. Energy
gain is then analyzed as a function of the pertubation amplitude for
single-mode perturbations or of the mean-square perturbation amplitude for
multimode perturbations. Alpha-particle energy deposition is treated diffusively
in this model using a single energy group for faster computation.
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A fast 2-D moving-grid eulerian code has been
developed to simulate deceleration phase,
ignition, and burn of ICF capsules

• The code includes the essential physics:  two fluids, thermal transport,
and one-group alpha diffusion. The goal is to compile a large database
of various runs to correlate the effects of the Rayleigh–Taylor instability
on fusion energy yield.

• The full multimode simulation of the deceleration, ignition, and burn
on a 300 × 300 grid may be run in about an hour on a fast PC.

• As input, we use output from the 1-D code LILAC at the end of the
acceleration phase. Multimode velocity perturbations are introduced
to simulate expected 2-D distortion.
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The model is based on an operator-splitting technique between
hydrodynamics and transport. It includes single mass
and momentum equations, while solving a separate
energy equation for electrons and ions

• We use a single-fluid model, including an additional energy conservation
equation, to calculate the electron pressure:

• We use the ideal gas equation of state:

• A simple manipulation of the electron energy equation leads to the following
conservative form:
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The code makes use of a cylindrical grid
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• We choose to solve the hydrodynamic equations in cylindrical
coordinates, assuming no variation in ϕ.

• This avoids small grid spacing in θ for small r, thereby allowing
a larger timestep.
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A uniformly compressing Eulerian grid
allows for higher resolution near stagnation

• This yields the following set of equations:
∂U
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• Moving-grid variable transformation: ξ = r
R t( )
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The code treats heat conduction diffusively and uses
an analytical solution for temperature equilibration

• Heat conduction equation using Spitzer thermal conductivity:

• Analytically solve the equation for ion and electron temperature equilibration
at each time step using the electron-ion equilibration time:

with the solution
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Alpha transport is treated with
a single-group diffusion model
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• To further shorten computation time, we treat alpha transport using
a single diffusion equation for the alpha-particle energy density εα:
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Notes on computational methods used

• Algorithms used

– The hydrodynamics equations are treated using a predictor–
corrector, MacCormack, scheme. Also, the electron pressure
and alpha-particle energy are convected using the same scheme
according to the equation given for electron pressure.

– The heat conduction and alpha diffusion equations are treated
with a Crank–Nicholson diffusion solver.

– Bremsstrahlung radiation is treated as a sink term
in the energy equation.

• Stability of algorithm

– Due to the strong shocks present in ICF implosions, artificial
terms were added to simulate both viscosity and heat conduction
to prevent oscillations near shock fronts.
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Evolution of shell density, l = 20 (single mode), inner
surface velocity perturbation = 20% of implosion velocity
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Two-dimensional simulations show that the stabilizing
effect of hot-spot ablation significantly reduces the
deceleration RT growth well into the nonlinear regime
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The code has been tested for single-mode
inner-surface velocity perturbations
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Fusion energy yield versus
perturbation amplitude, l = 20

• Output energies for low
perturbation amplitude
(l = 20) are still significant
fractions of the 1-D
energy output.

• Other perturbation modes
gave higher energy yields,
suggesting that l = 20 is
probably the most
damaging mode.

• Similar graphs for other
l modes and for surface
perturbations are
in progress.
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Preliminary runs agree qualitativly with predicted
models of the deceleration phase of implosion

• Note that for perturbation modes l = 10, l = 30, and l = 40, the energy
yield is greater than for the l = 20 mode, given the same initial
perturbation amplitude. This is in accordance with the linear theory
of the deceleration-phase instability by Betti et al. (LLE Review 85).

• From the gain plot for l = 20, one can see that the gain is not significantly
affected for pertubation amplitudes of 30% or less. Note that these
inner-shell perturbations are centered in a region of the shell, which
is relatively low density. Due to this, outer-surface perturbations
affect the integrity of the shell more significantly and ultimately
fusion energy yield.
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A multimode perturbation weighted at low modes
breaks the capsule shell, giving low YOC

• A flat-spectrum multimode simulation with ν = 0.2νshell for all
even modes (l = 2 to 40) shows a broken capsule and a small
hot spot, giving a yield of 4.8 MJ (YOC = 0.08).
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2-D simulations with outer-surface nonuniformities
show that only low-l modes feed through and grow,
causing hot-spot distortion

• Modes l = 2 to 100; velocity perturbation with kinetic energy = 2.7 kJ;
linearly decaying spectrum; gain = 47 MJ, YOC = 80%
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The code maintains high resolution at stagnation
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• This plot shows the
hot-spot resolution
(400 × 400 total grid size)
near stagnation. A log(ρ)
plot is superimposed
to show the shell size.

• This same simulation
took approximately
three hours to complete
on a PC.
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Conclusions

• We have written a fast 2-D code capable of simulating an ICF implosion
(from free-fall to ignition and burn wave propagation) on a high-resolution
grid (400 × 400), which runs about three hours on a fast PC.

• Preliminary results of both single- and multimode simulations support
existing theories of 2-D Rayleigh–Taylor instability, showing that
perturbation modes around l = 20 most significantly affect the fusion
energy yield.
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