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Propagation of Plasma Waves in Weakly Collisional Plasmas

R. W. Short and A. Simon

Laboratory for Laser Energetics, U. of Rochester

Wave propagation in weakly collisional plasmas is a topic of continuing interest and controversy. Lenard and

Bernstein1 solved a simplified Fokker–Planck equation exactly, but this result is expressed in terms of an integral

that can be difficult to evaluate. Thus more recent investigators have employed approximations such as boundary

layer methods2 and expansion in Hermite polynomials.3 Su and Oberman2 found a damping exponent for the

perturbed distribution function proportional to the cube of time and/or distance, a result that has been disputed on

theoretical and experimental grounds.3 We derive an analytic solution that is readily evaluated numerically. Roots

of the resulting dispersion relation are found and agree with Ref. 3, and the detailed spatial and temporal evolution

of the distribution function is shown. This work was supported by the U.S. Department of Energy Office of Inertial

Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
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3. C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999).



Abstract

Wave propagation in weakly collisional plasmas is a topic of continuing
interest and controversy. Lenard and Bernstein1 solved a simplified
Fokker–Planck equation exactly, but this result is expressed in terms
of an integral that can be difficult to evaluate. Thus, more recent
investigators have employed approximations such as boundary layer
methods2 and expansion in Hermite polynomials.3 Su and Oberman2

found a damping exponent for the perturbed distribution function
proportional to the cube of time and/or distance, a result that has been
disputed on theoretical and experimental grounds.3 We derive an
analytic solution that is readily evaluated numerically. Roots of the
resulting dispersion relation are found and agree with Ref. 3, and the
detailed spatial and temporal evolution of the distribution function is
shown.

1A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958).
2C. H. Su and C. Oberman, Phys. Rev. Lett. 20, 427 (1968).
3C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999).



P2117

A simplified, linearized Fokker–Planck equation
can be solved exactly in terms of gamma functions

Summary

• This enables the effects of weak collisionality to be studied easily,
both analytically and numerically.

• The discrete spectrum of the Vlasov equation (collective modes)
is modified continuously by weak collisionality.

• The continuous spectrum of the Vlasov equation (Case–Van Kampen
or “ballistic” modes) is replaced by supralinear spatial and/or temporal
decay of initial distribution function perturbations.
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Outline

• Adding weak collisionality to the Vlasov equation:
a simplified Fokker–Planck equation.

• Temporal modes and dispersion relation

• Antenna problem: spatial modes and dispersion relation

• Summary and conclusions
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Weak collisionality may be modeled by adding a simplified
Fokker–Planck term to the linearized Vlasov equation

• The equation for the perturbed distribution function is

• The collision term conserves particles and satisfies the H-theorem
but gives a velocity-independent collision frequency.

• The electric field is determined by Poisson’s equation:

• Look for normal mode solutions of the form f x,ν, t( ) = f̃ k, ν,ω( )ei kx−ωt( ) .

∂ f
∂ t

+ ν ∂ f
∂x

− e
m

∂ f
∂ν

E = ν ∂
∂ν

νf + νt
2 ∂ f

∂ ν





.

∂E
∂x

= −4πe f x,ν,t( )dν−∞
∞

∫ .
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The Vlasov and Poisson equations are combined
and converted to dimensionless form

• Following the notation of Ng et al. we define

• The combined Vlasov and Poisson equations then become

• Fourier transforming in velocity with

gives a first-order equation for the transform of the distribution function:

u ≡ ν 2 νt( ), Ω ≡ ω 2 kνt( ), g ≡ 2 νt f̃ n0 ,

g0 u( ) ≡ e−u2
π , η u( ) ≡ α

2
∂g0
∂u

, α ≡ 1 k2λD
2 , and µ ≡ ν 2 kνt( ).

u − Ω( )g u( ) − η u( ) g ′u( )d ′u−∞
∞

∫ = −iµ ∂
∂u

ug + 1
2

∂g
∂u





 .

G w( ) = 1
2π

eiwu g u( )−∞
∞

∫

−i
d

dw
− Ω





G w( ) + iα
2

we
− w2

4 G 0( ) = iµ w
d

dw
G w( ) + 1

2
w2 G w( )




.
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The solution can be expressed in terms
of the incomplete gamma function

• The dispersion relation is

1= −α 1+ iΩ
µ

2µ2( ) 1 2µ2( )− iΩ µ( )[ ]e1 2µ2
γ 1

2µ2 − iΩ
µ

,
1

2µ2















.

• For small values of µ, numerical evaluation is facilitated by writing
the dispersion relation as

1= α iΩ
µ

G
1

2µ2 − iΩ
µ

,
1

2µ2
















 − 2µ2( ) 1 2µ2( )− iΩ µ( )[ ] e1 2µ2

Γ 1
2µ2 − iΩ

µ






 − 1












,

where G a,x( ) ≡ x−aexΓ a, x( ) = 1

x + 1− a

1+ 1

x + 2 − a

1+ 2

x + 3 − a
1+K

.
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To study behavior as µ → 0 it is useful to expand
the dispersion relation in µ





• To first order in µ the dispersion relation becomes

• When µ = 0, this reduces to the familiar Landau dispersion relation
for the collective modes of the plasma.

• For µ ≠ 0 a discrete set of roots approach the Landau roots as µ →0,
but the Case–Van Kampen continuum is not recovered.

1= − α 1+ i π Ωe−Ω2
erfc −iΩ( ) + iΩ

3
2 1− Ω2( ) + i π Ωe−Ω2

3 − 2Ω2( )erfc −iΩ( )




µ





.
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Experiments usually involve spatial propagation
from an antenna rather than temporal decay

u − 1
κ





 g −

η u( )
κ2 g ′u( )d ′u−∞

∞
∫ + i

2π
ue
κ

ω2

ωp
2 η u( ) = −i

µ
κ

∂
∂u

ug + 1
2

∂g
∂u





 .

• Let

and η u( ) =
ωp

2

ω2
∂g0
∂u

:

f =
n0
2νt

g,ν = 2νtu, ν = ωµ, k = ω
2νt

κ ,

• Again, start with the Fokker–Planck and Poisson equations:

∂f
∂t

+ ν ∂f
∂x

− e
m

∂ f0
∂ν

E = ν ∂
∂ν

νf + νt
2 ∂f

∂ν






∂
∂x

E −Eext( ) = −4π e fdν−∞
∞∫ ,

where the antenna source is Eext x, t( ) = Ee δ x( )e−iωt .
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The solution for the perturbed distribution function
is again expressed in terms of gamma functions

• Define                                   ; this is a single-valued analytic function in
the finite complex a and x planes, except for simple poles when a is a
non-positive integer.

• Fourier transforming the perturbed distribution in velocity

the solution is

d a,x( ) ≡ exx−aγ a,x( )

G κ,w( ) = 1
2π

g κ,u( )e−iwudu−∞
∞

∫ ,

G κ,w( ) =

iue
πκ

e
− w2

4 1+ i
µ

d
κ2

2µ2 − i
µ

,
κ2

2µ2 1− µ
κ

w























1+ 1
κ2

2ωp
2

ω2 1+ i
µ

d
κ2

2µ2 − i
µ

,
κ2

2µ2


















.
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The denominator gives the collective modes;
the numerator gives the “free-streaming” modes

• The dispersion relation is

• As µ → 0 the roots approach the Landau collective modes
of the Vlasov equation.

• The numerator gives the spatial decay of the “free streaming” part
of the perturbed distribution function after the collective modes
have Landau damped away. In dimensional variables the result is

1+ 1
κ2

2ωp
2

ω2 1+ i
µ

d
κ2

2µ2 − 1
µ

,
κ2

2µ2


















= 0.

g ν,x( ) = − 2UE
π

e
− ν2

2 νt
2

e
iω x

ν e
− ν

3ω2 νt
2 x3

ν5 for
x
ν

> 0, 0 for
x
ν

< 0.
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A simplified, linearized Fokker–Planck equation
can be solved exactly in terms of gamma functions

• This enables the effects of weak collisionality to be studied easily,
both analytically and numerically.

• The discrete spectrum of the Vlasov equation (collective modes)
is modified continuously by weak collisionality.

• The continuous spectrum of the Vlasov equation (Case–Van Kampen
or “ballistic” modes) is replaced by supralinear spatial and/or temporal
decay of initial distribution function perturbations.

Summary/Conclusions


