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Analysis of a Direct-Drive Ignition Capsule Designed for the NIF

P. W. McKenty

Laboratory for Laser Energetics, U. of Rochester

The current direct-drive ignition capsule design planned by the University of Rochester’s Laboratory for Laser

Energetics to be fielded on the National Ignition Facility (NIF) will be reviewed in this paper. The direct-drive

requirements to establish a propagating thermonuclear burn on the NIF will be discussed in terms of the constraints

on laser-irradiation uniformity and target surface roughness. The ignition design1,2 consists of a cryogenic DT

shell (~350 µm thick and ~3 mm in diameter) contained within a very thin (~2-µm) CH shell. To maintain stability

during the implosion, the target is placed on an isentrope approximately three times that of Fermi-degenerate DT

(α = 3). One-dimensional hydrodynamic studies using LILAC show that the ignition design is robust to

uncertainties in laser power history and fuel composition. The two-dimensional hydrodynamics code ORCHID is

used to examine the target performance under the influence of the main sources of nonuniformity: laser imprint,

power imbalance, and inner- and outer-target-surface roughness. Results from these studies indicate that the

reduction in target gain from all sources of nonuniformity can be described in terms of a single parameter related to

the resultant inner-surface deformation at the end of the acceleration stage of the implosion. This parameter is

constructed from a spectral decomposition of the surface deformation by giving different weights to the long and

short wavelengths of nonuniformity. The physical reason for the difference in weighting is discussed in terms of

the mechanisms for ignition failure. This work was supported by the U.S. Department of Energy Office of Inertial Confinement

Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

1. C. P. Verdon, Bull. Am. Phys. Soc. 38, 2010 (1993).
2. S. E. Bodner et al., Phys. Plasmas 5, 1901 (1998).
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Scaling target gain with ��provides the basis for
developing a global nonuniformity budget for
the NIF direct-drive point design

• Results from the nonuniformity budget, accounting for all
four sources of nonuniformities, indicate that direct-drive
targets can achieve gains in excess of 30 using current NIF
specifications and the deployment of SSD with two color cycles.

• Outer surface roughness does not make a significant
contribution to the nonuniformity budget.

• Distortions at stagnation are dominated by low order
modes, however, high order modes cannot be neglected.

• Gain reduction is caused by target nonuniformities delaying
the onset of ignition thereby wasting margin of the
stagnating fuel layer.

Summary
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Outline

� Point design

� Numerical modeling

� Sources of implosion nonuniformities

– power balance

– ice/vapor surface roughness

– outer surface roughness

– laser imprint

� Failure analysis

� Nonuniformity budget

� Summary
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The “all-DT” direct-drive target is a thick
DT-ice layer enclosed by a thin CH shell

1.5 MJ, � = 3
Gain: 45
Yield: 2.5 � 1019

�rpeak: 1300 mg/cm2

<Ti>n: 30 keV
Hot spot CR: 29
Peak IFAR: 60

1.69 mm

1.35 mm
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Simulations show that low-order modes can
reduce high-gain capsule performance if the
perturbation amplitudes are large

Illumination perturbation amplitude
Peak-to-valley (%)
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To relate the gain reduction to the mode spectrum,
a series of 2-D ORCHID simulations with perturbed
inner DT-ice interface has been performed
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There are four sources of perturbations a direct-
drive capsule must tolerate to ignite and burn

Target fabrication issues Laser irradiation issues

Outside
capsule
finish

Inner DT ice
roughness

Drive
symmetry

Laser
imprinting

Sources of implosion nonuniformities



� �
2�rmslaser imprinting

Max allowed
valuelaser imprinting
�

�rmsdrive symmetry

Max allowed
valuedrive symmetry
� �

2

�rmsDT
 
ice

Max allowed
valueDT ice
� �

2 �rmsoutside capsule finish

Max allowed
valueoutside capsule finish
� �

2

�

Heuristically, there are four sources of perturbations a
direct-drive capsule must tolerate to ignite and burn

TC4113f

Laser-irradiation-related issues
Target-fabrication-related issues

� < 1



TC5495

NIF temporal power histories are mapped to target
and spherically decomposed for input into ORCHID

NIF laser power histories provided by Ogden Jones (LLNL)
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Results of ORCHID calculations have validated
the direct-drive base-line power imbalance specifications
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Perturbations located initially on the inside DT-ice
surface affects the capsule implosion during both
the acceleration and deceleration phases

Time

Initial capsule

Feedout of
perturbation

to the ablation
surface

Ablation surface
growth and feed-

through to the
inner surface

during the
acceleration

phase

Growth of the hot
spot–main fuel
layer interface

during the
deceleration

phase

Inside
DT-ice
surface

Ice/vapor surface roughness



TC5211

ORCHID simulations indicate that target gain depends
strongly on the development of the low-order modes
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Scaling target gain with ��correctly balances the
individual contributions of the low and high order
modes during the implosion.
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The smoothness and concentricity of thin-wall
polyimide targets (1.5 to 2.0 �m) have been improved

� High-frequency roughness is a consequence of the coating process;
the rms value � > 100 is < 40 nm.

� Low-frequency roughness is caused by weak shells deforming to
accommodate the bending moments that develop during processing.

� Inflating the shell reduces the low-frequecy roughness.
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Twice the NIF standard specification (~165 nm) for
outer surface roughness does not result in any
significant disruption of the ice/vapor interface
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SSD reduces time-averaged laser nonuniformity

*S. Skupsky, Phys. Plasmas 6, 2157 (1999).
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Application of SSD bandwidth is necessary
for shell integrity during the entire implosion
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Scaling gain with    , taken from ORCHID calculations,
indicates that NIF must deploy at least 1-THz bandwidth
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To achieve high gain for NIF capsules ignition
must occur while the cold fuel still retains a significant
fraction (margin) of its peak kinetic energy

Graph taken from Levedahl and Lindl, Nucl. Fusion 37 (2), 170 (1997).
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Shell stagnation determines the margin trajectory
that defines the window for high gain
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ORCHID simulations indicate that as ice/vapor
interface perturbations increase, ignition is delayed
and gain is reduced
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Scaling gain with    allows forming a global nonuniformity
budget for the direct-drive point design
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Scaling target gain with ��provides the basis for
developing a global nonuniformity budget for
the NIF direct-drive point design

• Results from the nonuniformity budget, accounting for all
four sources of nonuniformities, indicate that direct-drive
targets can achieve gains in excess of 30 using current NIF
specifications and the deployment of SSD with two color cycles.

• Outer surface roughness does not make a significant
contribution to the nonuniformity budget.

• Distortions at stagnation are dominated by low order
modes, however, high order modes cannot be neglected.

• Gain reduction is caused by target nonuniformities delaying
the onset of ignition thereby wasting margin of the
stagnating fuel layer.

Summary/Conclusion


