Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility

P. W. McKenty *et al.* University of Rochester Laboratory for Laser Energetics 42nd Annual Meeting of the American Physical Society Division of Plasma Physics Québec City, Canada 23–27 October 2000

Analysis of a Direct-Drive Ignition Capsule Designed for the NIF

P. W. McKenty

Laboratory for Laser Energetics, U. of Rochester

The current direct-drive ignition capsule design planned by the University of Rochester's Laboratory for Laser Energetics to be fielded on the National Ignition Facility (NIF) will be reviewed in this paper. The direct-drive requirements to establish a propagating thermonuclear burn on the NIF will be discussed in terms of the constraints on laser-irradiation uniformity and target surface roughness. The ignition design^{1,2} consists of a cryogenic DT shell (~350 μ m thick and ~3 mm in diameter) contained within a very thin (~2- μ m) CH shell. To maintain stability during the implosion, the target is placed on an isentrope approximately three times that of Fermi-degenerate DT $(\alpha = 3)$. One-dimensional hydrodynamic studies using *LILAC* show that the ignition design is robust to uncertainties in laser power history and fuel composition. The two-dimensional hydrodynamics code ORCHID is used to examine the target performance under the influence of the main sources of nonuniformity: laser imprint, power imbalance, and inner- and outer-target-surface roughness. Results from these studies indicate that the reduction in target gain from all sources of nonuniformity can be described in terms of a single parameter related to the resultant inner-surface deformation at the end of the acceleration stage of the implosion. This parameter is constructed from a spectral decomposition of the surface deformation by giving different weights to the long and short wavelengths of nonuniformity. The physical reason for the difference in weighting is discussed in terms of the mechanisms for ignition failure. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

- 1. C. P. Verdon, Bull. Am. Phys. Soc. 38, 2010 (1993).
- 2. S. E. Bodner et al., Phys. Plasmas 5, 1901 (1998).

Collaborators

V. N. Goncharov R. P. J. Town S. Skupsky R. Betti R. L. McCrory J. A. Delettrez D. L. Harding M. Wittman R. L. Keck

Summary

Scaling target gain with $\overline{\sigma}$ provides the basis for developing a global nonuniformity budget for the NIF direct-drive point design

- Results from the nonuniformity budget, accounting for all four sources of nonuniformities, indicate that direct-drive targets can achieve gains in excess of 30 using current NIF specifications <u>and</u> the deployment of SSD with two color cycles.
- Outer surface roughness does not make a significant contribution to the nonuniformity budget.
- Distortions at stagnation are dominated by low order modes, however, high order modes cannot be neglected.
- Gain reduction is caused by target nonuniformities delaying the onset of ignition thereby wasting margin of the stagnating fuel layer.

- Point design
- Numerical modeling
- Sources of implosion nonuniformities
 - power balance
 - ice/vapor surface roughness
 - outer surface roughness
 - laser imprint
- Failure analysis
- Nonuniformity budget
- Summary

Point design

The "all-DT" direct-drive target is a thick DT-ice layer enclosed by a thin CH shell

R. Town, LLE Review, <u>79</u>, 121 (1999).

Simulations show that low-order modes can reduce high-gain capsule performance if the perturbation amplitudes are large

UR 🔌

TC2802a

To relate the gain reduction to the mode spectrum, a series of 2-D ORCHID simulations with perturbed inner DT-ice interface has been performed

Sources of implosion nonuniformities

There are four sources of perturbations a directdrive capsule must tolerate to ignite and burn

Heuristically, there are four sources of perturbations a direct-drive capsule must tolerate to ignite and burn

 $\begin{pmatrix} \frac{\sigma_{rms}}{Max allowed} \\ value_{drive symmetry} \end{pmatrix}^{2} + \begin{pmatrix} \frac{\sigma_{rms}}{Iaser imprinting} \\ \frac{Max allowed}{value_{Iaser imprinting}} \end{pmatrix}^{2}$ $+ \begin{pmatrix} \frac{\sigma_{rms}}{Iaser imprinting} \\ \frac{\sigma_{rms}}{Iaser imprinting} \end{pmatrix}^{2} + \begin{pmatrix} \frac{\sigma_{rms}}{Iaser imprinting} \\ \frac{\sigma_{rms}}{Value_{Iaser imprinting}} \end{pmatrix}^{2}$ $+ \begin{pmatrix} \frac{\sigma_{rms}}{Iaser imprinting} \\ \frac{\sigma_{rms}}{Value_{Iaser imprinting}} \end{pmatrix}^{2} + \begin{pmatrix} \frac{\sigma_{rms}}{Iaser imprinting} \\ \frac{\sigma_{rms}}{Value_{Iaser imprinting}} \end{pmatrix}^{2}$

Laser-irradiation-related issues Target-fabrication-related issues **Power balance**

NIF temporal power histories are mapped to target and spherically decomposed for input into *ORCHID*

Results of *ORCHID* calculations have validated the direct-drive base-line power imbalance specifications

Ice/vapor surface roughness

Perturbations located initially on the inside DT-ice surface affects the capsule implosion during both the acceleration and deceleration phases

ORCHID simulations indicate that target gain depends strongly on the development of the low-order modes

Scaling target gain with $\overline{\sigma}$ correctly balances the individual contributions of the low and high order modes during the implosion.

Outer surface roughness

The smoothness and concentricity of thin-wall polyimide targets (1.5 to 2.0 μ m) have been improved

- High-frequency roughness is a consequence of the coating process; the rms value $\ell > 100$ is < 40 nm.
- Low-frequency roughness is caused by weak shells deforming to accommodate the bending moments that develop during processing.
- Inflating the shell reduces the low-frequecy roughness.

Twice the NIF standard specification (~165 nm) for outer surface roughness does not result in any significant disruption of the ice/vapor interface

LLE

Laser imprint

SSD reduces time-averaged laser nonuniformity

^{TC5220a} *S. Skupsky, Phys. Plasmas <u>6</u>, 2157 (1999).

Application of SSD bandwidth is necessary for shell integrity during the entire implosion

Scaling gain with $\bar{\sigma}$, taken from *ORCHID* calculations, indicates that NIF must deploy at least 1-THz bandwidth

Failure Analysis

To achieve high gain for NIF capsules ignition must occur while the cold fuel still retains a significant fraction (margin) of its peak kinetic energy

Graph taken from Levedahl and Lindl, Nucl. Fusion 37 (2), 170 (1997).

Shell stagnation determines the margin trajectory that defines the window for high gain

ORCHID simulations indicate that as ice/vapor interface perturbations increase, ignition is delayed and gain is reduced

Nonuniformity budget

Scaling gain with $\overline{\sigma}$ allows forming a global nonuniformity budget for the direct-drive point design

Summary/Conclusion

Scaling target gain with $\overline{\sigma}$ provides the basis for developing a global nonuniformity budget for the NIF direct-drive point design

- Results from the nonuniformity budget, accounting for all four sources of nonuniformities, indicate that direct-drive targets can achieve gains in excess of 30 using current NIF specifications <u>and</u> the deployment of SSD with two color cycles.
- Outer surface roughness does not make a significant contribution to the nonuniformity budget.
- Distortions at stagnation are dominated by low order modes, however, high order modes cannot be neglected.
- Gain reduction is caused by target nonuniformities delaying the onset of ignition thereby wasting margin of the stagnating fuel layer.