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Imprint Reduction with Shaped Pulses

T. J. B. Collins

Laboratory for Laser Energetics, U. of Rochester

A novel technique for reducing laser imprint in OMEGA cryogenic targets has been developed. Standard

ICF cryogenic targets consist of a shell of DT ice with an thin outer layer of CH. The presence of the CH

layer gives rise to a brief period of early-time growth by the Rayleigh-Taylor (RT) instability, which

effectively increases the amount of laser imprint by about a factor of 2. Two–dimensional ORCHID

simulations show that by introducing a short, high-intensity spike at the start of the implosion, this early-

time growth can be significantly reduced with only a small change to the calculated 1–D neutron yield. This

work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement

No. DE-FC03-92SF19460.
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The CH outer layer increases imprint

� OMEGA cryo targets have an outer
~1- to 4-�m layer of CH.

� The CH/DT interface causes an
additional, brief period of Rayleigh–
Taylor growth, early in time.

� This affects the late-time target
conditions and increases imprint.
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The embedded interface produces a rarefaction wave

Three early-time lineouts from an ORCHID simulation

� When the rarefaction wave returns, the CH layer starts to accelerate
and initiates early-time Rayleigh–Taylor growth.
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Rarefaction wave accelerates front surface,
causing Rayleigh–Taylor growth
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The CH/DT interface produces a new,
brief period of Rayleigh–Taylor growth

� This growth is greater for OMEGA targets than for NIF targets, for
a given mode number �, because smaller R ��smaller � ��greater �.
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A brief high-intensity spike at the start
of the foot pulse reduces imprint
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The intensity spike reduces the effects of CH layer

� The intensity spike
– launches a stronger shock,
– which reaches the CH/DT interface sooner,
– and results in a greater post-shock sound speed;
– the width of the compressed CH is less,
– so the rarefaction waves returns sooner
– and is shorter in duration.

� The spike reduces the early Rayleigh–Taylor growth.

� Rayleigh–Taylor growth starts at a lower amplitude.
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Imprint reduction is greater for shorter wavelengths

� Early-time growth is less for greater wavelengths.

� Phase reversal can counteract reduction at small �.
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The intensity spike can affect the neutron yield
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The imprint reduction is greater
for thicker CH layers

� Equivalent Surface Finish: The surface roughness that would,
for uniform illumination, produce the same outer-surface
modulation amplitude.

� Duration of early-time growth ~d/�cs, where d is the CH layer
width, � is the foot-shock compression, and cs is the post-shock
sound speed.

� Simple average of imprint reduction over mode number is greater
for thicker CH layers.
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The intensity spike increases thermal smoothing

� Smoothing distance dc
between critical and
ablation surfaces increases
with laser intensity.

� Pressure nonuniformity
decreases exponentially
with smoothing distance.

� Thermal smoothing
contributes to imprint
reduction. S
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An initial intensity spike reduces imprint
in OMEGA cryogenic targets

� Outer CH layer introduces early period of Rayleigh–Taylor
growth, increasing imprint.

� Initial intensity spike reduces effects of CH layer.

� Intensity spike also reduces imprint via thermal smoothing.

Summary


