Imprint Reduction with Shaped Pulses
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I mprint Reduction with Shaped Pulses

T.J. B. Collins
Laboratory for Laser Energetics, U. of Rochester

A novel technique for reducing laser imprint in OMEGA cryogenic targets has been developed. Standard
|CF cryogenic targets consist of a shell of DT ice with an thin outer layer of CH. The presence of the CH
layer gives rise to a brief period of early-time growth by the Rayleigh-Taylor (RT) instability, which
effectively increases the amount of laser imprint by about a factor of 2. Two—dimensiona ORCHID
simulations show that by introducing a short, high-intensity spike at the start of the implosion, this early-
time growth can be significantly reduced with only a small change to the calculated 1-D neutron yield. This

work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement
No. DE-FC03-92SF19460.



The CH outer layer increases imprint
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The embedded interface produces a rarefaction wave
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Three early-time lineouts from an ORCHID simulation
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e When the rarefaction wave returns, the CH layer starts to accelerate
and initiates early-time Rayleigh—Taylor growth.
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Rarefaction wave accelerates front surface,
causing Rayleigh—Taylor growth
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The CH/DT interface produces a new,
brief period of Rayleigh—Taylor growth
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. This growth is greater for OMEGA targets than for NIF targets, for
a given mode number /, because smaller R = smaller A = greater v.
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A brief high-intensity spike at the start
of the foot pulse reduces imprint
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The intensity spike reduces the effects of CH layer
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e The intensity spike
— launches a stronger shock,
— which reaches the CH/DT interface sooner,
— and results in a greater post-shock sound speed;
— the width of the compressed CH is less,
— so the rarefaction waves returns sooner
— and is shorter in duration.

e The spike reduces the early Rayleigh—Taylor growth.

e Rayleigh—Taylor growth starts at a lower amplitude.
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Imprint reduction is greater for shorter wavelengths
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e Early-time growth is less for greater wavelengths.
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e Phase reversal can counteract reduction at small A.
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The intensity spike can affect the neutron yield
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The imprint reduction is greater
for thicker CH layers
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e Equivalent Surface Finish: The surface roughness that would,
for uniform illumination, produce the same outer-surface
modulation amplitude.

e Duration of early-time growth ~d/§cg, where d is the CH layer
width, & is the foot-shock compression, and cg is the post-shock
sound speed.

e Simple average of imprint reduction over mode number is greater
for thicker CH layers.
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The intensity spike increases thermal smoothing
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Summary

An initial intensity spike reduces imprint
In OMEGA cryogenic targets
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e Quter CH layer introduces early period of Rayleigh—Taylor
growth, increasing imprint.

e Initial intensity spike reduces effects of CH layer.

e Intensity spike also reduces imprint via thermal smoothing.
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