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The Effect of Plasma-Formation Rate on Laser Imprinting

T. R. Boehly

Laboratory for Laser Energetics, U. of Rochester

In direct-drive inertial confinement fusion (ICF), target perturbations imprinted by laser nonuniformities can

seed instabilities that ultimately can degrade the target’s performance. Since laser absorption and

hydrodynamic instability occur in separate regions, the intervening plasma can smooth laser nonuniformities

and “decouple” them from the instability. Imprinting occurs up to the decoupling time, defined as the time to

form a plasma of length (dc), sufficient to smooth nonuniformities with wave number (k), where kdc ~ 2. The

imprinting level therefore depends on perturbation wavelength and on the plasma formation rate, which, in

turn, depends on the laser pulse shape. In addition, the imprint level depends on the temporal behavior of

beam-smoothing techniques (which also depend on spatial frequency). By comparing measured imprint

levels for cases with and without temporal beam smoothing, the decoupling times have been determined and

are found to be in good agreement with simulations. The experiments were performed on the OMEGA laser

using planar targets irradiated with UV beams having various pulse shapes and various beam-smoothing

techniques. Laser imprinting was measured using x-ray radiography on targets with pre-imposed, single-

mode spatial modulations that provided calibration of the imprint levels produced by the laser conditions

studied. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under

Cooperative Agreement No. DE-FC03-92SF19460.
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Experiments have demonstrated that shock heating
can increase target stability

• Shock heating can decompress the target and increase the ablation
velocity.  Ablative stabilization reduces the effect of the R–T instability.

• Absorption spectroscopy is used to measure both shock heating and
heat-front penetration.

• Square pulses produce shock heating to ~25 eV and behave close
to 1-D predictions.

• Ramp pulses produce shock heating to <15 eV and exhibit early
burnthrough due to the R–T instability.

• Stability analysis demonstrates a correlation between shock heating
(ablative stabilization) and increased target stability.

Summary
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1-D simulations accurately predict heating by the
shock and heat-front produced by a square pulse
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Targets driven by ramped pulses produce no Al
absorption lines, even when heated to >500 eV
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� Burnthrough is also observed for the 10-�m-deep case.
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For the ramp pulse, burnthrough is
predicted only for the 5-�m case
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Both pulses displace targets by similar amounts,
but the ablation velocities are very different

� E-folds of growth are proportional to distance traveled.

Square Ramp
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An RT mix layer around the 1-D ablation depths
explains the burnthrough results
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Experiments have demonstrated that shock heating
can increase target stability

• Shock heating can decompress the target and increase the ablation
velocity.  Ablative stabilization reduces the effect of the R–T instability.

• Absorption spectroscopy is used to measure both shock heating and
heat-front penetration.

• Square pulses produce shock heating to ~25 eV and behave close
to 1-D predictions.

• Ramp pulses produce shock heating to <15 eV and exhibit early
burnthrough due to the R–T instability.

• Stability analysis demonstrates a correlation between shock heating
(ablative stabilization) and increased target stability.

Summary/Conclusion


