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Theory of the Deceleration-Phase Rayleigh–Taylor Instability

R. Betti, M. Umansky, and V. Lobatchev

Laboratory for Laser Energetics, U. of Rochester

The theory of the deceleration phase of an imploding ICF capsule is carried out analytically by solving the

conservation equations in Lagrangian coordinates inside the hot-spot region. The evolution of the hot-spot mass

and temperature are calculated. The hot-spot mass increases in time because of the ablation flow off the shell’s

inner surface. Such a flow is caused by the heat flux leaving the hot spot and being deposited on the shell’s inner

surface. The resulting ablation velocity of the thermal front inside the shell is calculated and compared with the

results of numerical simulations. The density-gradient scale length on the shell’s inner surface is also determined as

a function of the hot-spot radius, shell temperature, and hot-spot temperature. The shell acceleration, ablation

velocity, and density-gradient scale length are used to determine the Rayleigh–Taylor growth rates, which are well

below their classical value. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion

under Cooperative Agreement No. DE-FC03-92SF19460.
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A theoretical model for the deceleration is derived and
compared with numerical simulations; the ablation velocity
at the shell’s inner surface leads to the suppression of
short-wavelength RT modes

Summary

• All hot-spot profiles are determined analytically.

• The shell’s properties are governed by four first-order ordinary
differential equations.

• The heat flux leaving the hot spot and depositing on the shell’s inner
surface leads to a finite ablation velocity, which is the penetration
velocity of the thermal front into the cold shell.

• Thermal conduction determines the density-gradient scale length at
the shell’s inner surface.

• Short-wavelength RT modes are stabilized by finite ablation velocity
and density-gradient scale length.
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The theory is developed assuming that the flow
is subsonic in the hot spot and supersonic in the
free-fall part of the shell
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The model for the hot spot assumes subsonic
flow and kσνl proportional to T2

energy

3.5 MeV

U<<Csound σν ≈ ∑α T2

AssumptionsLagrangian coordinate

mass momentum
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All the hot-spot parameters can be calculated analytically;
they depend on the hot-spot pressure Phs(t) only (and the
initial conditions)

t0 = beginning of deceleration phase; κSpitz = κ T5 2; Dα = 0.046 Gbar−1ns−1
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The hot-spot pressure depends on the shell dynamics
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Rshock
Rhs

pdV

Dα = 0.046 Gbar−1 ns−1

Newton’s law for shocked shell:

Mass conservation for shocked shell:

Hugoniot relation:

Hot-spot energy conservation:

d
dt

Mss t( )Ṙhs t( )[ ] = 4πR hs
2 t( )Phs t( ) + Ṁss Uff

Ṁss = 4πR shock
2 ρff Ṙshock − Uff( )

Ṙshock = 4
3

Ṙhs − 1
3

Uff

d
dt

PhsRhs
3( ) = 5

3
Dα Phs

2 Rhs
3 − 2Phs Rhs

2 Ṙhs

α heating
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The initial conditions of the model are taken from the
simulations at the beginning of the deceleration phase
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The theoretical profiles have been compared with LILAC
simulations of a NIF-like capsule at stagnation
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The deceleration of a direct-drive, NIF-like capsule
at stagnation is approximately 4000 µm/ns2

t0 = beginning of deceleration phase
Cα = alpha amplification ~ 1
NIF direct drive:

Mshell ~ 1 mg
P(t0) ~ 900 Mbar
R0 ~ 240 µm
gstag ~ 4200 µm/ns2 for Cα = 1

Theory
Simulations (LILAC)
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The heat flux leaving the hot spot is deposited onto the
shell surface, causing mass ablation from the shell into
the hot spot; the hot-spot mass increases in time

Ths

Temperature
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Mass
ablation

V. Lobatchev and R. Betti, Phys. Rev. Lett. (in press).

Rate of change
of hot-spot mass

Mass flow through
hot-spot surface

dM hs
dt

= 4πRhs
2 ρshell Va

Ablation velocity:

Va = 0.21
Mi κSpitz Ths

keV 0,t( )[ ]
ρshell Rhs
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The ablation velocity varies between 12 and 30 µm/ns
during the 200-ps interval before stagnation
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The density-gradient scale length at the shell’s inner
surface is derived for an isobaric ablation front

• The density-gradient scale length is found using the formula
for the ablation velocity:

• Balance of heat flux to the shell and internal energy flux leaving the shell:

5
2

pVa ≈ −κ Tsh( ) dTsh
dr

≈ κ Tsh( ) Tsh
1

ρsh
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dr
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The density-gradient scale length at the shell’s inner
surface of a direct-drive, NIF-like capsule is ~1.5 µm

Simulation

Theory

Density-gradient scale length:
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The growth rates of the deceleration-phase RT
are reduced by ablation off the shell’s inner
surface; short-wavelength modes are suppressed

1R. Betti et al., Phys. Plasmas 5, 1446 (1998).

γ = 0.9
k g

1+ k Lm
− 1.4k Va

lcutoff ≈ 90

⇒ Froude =
8 Va

2

gLm
≈ 0.5 ⇒ Ref. 1 ⇒ α = 0.9, β = 1.4g = 3100 µm ns2

Va = 18 µm ns

Lm = 1.5 µm

k = lRhs

Rhs = 65 µm
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Two-dimensional, high-resolution Eulerian simulations
confirm the theoretical results*

• k = l/Rhs, Rhs ≈ 65 µm, �g� ≈ 3100 µm/ns2, �Va� ≈ 18 µm/ns, �Lm� ≈ 1.5 µm

*See poster JP1.037 by Lobatchev and Umansky.
  V. Lobatchev and R. Betti, Phys. Rev. Lett. (in press).
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The growth rates of the deceleration-phase RT instability
are significantly reduced by mass ablation at the shell’s
inner surface

Conclusions

• For a direct-drive, NIF-like capsule during the 200 ps before stagnation,

– g ~ 1000 to 4000 µm/ns2

– Va ~ 12 to 30 µm/ns

– Lm ~ 2 to 1 µm/ns

– maximum growth rate at l ~ 10 and γ ~ 20 ns−1

– maximum RT growth factor ~ 8

– cutoff mode number at lcutoff ~ 90


