

TC16112

Transverse magnetic fields break the usual DLA invariants, enabling energy retention, even in vacuum

B = 0 $\frac{\mathrm{d}}{\mathrm{dt}}(\boldsymbol{p}_{\mathrm{y}}-\boldsymbol{a})=\boldsymbol{0}$ $\frac{\mathrm{d}}{\mathrm{dt}}(\boldsymbol{\gamma}-\boldsymbol{\rho}_{\mathbf{X}})=\mathbf{0}$

B ≠ 0 $\frac{\mathrm{d}}{\mathrm{d}(\omega_0 t)}(\boldsymbol{p}_{\mathrm{y}} - \boldsymbol{a}) = \frac{\omega_{\mathrm{c}0}}{\omega_0}\boldsymbol{p}_{\mathrm{x}}$ $\frac{\mathrm{d}}{\mathrm{d}(\omega_0 t)}(\boldsymbol{\gamma} - \boldsymbol{p}_{\mathrm{x}}) = \frac{\omega_{\mathrm{c}0}}{\omega_0}\boldsymbol{p}_{\mathrm{y}}$

Regimes for energy retention, $\omega_{c0} \ll \omega_0$ - momentum rotation is slow compared to laser cycle, but not pulse duration [4] - momentum rotation affects electron interaction with a single laser cycle [5]

TC16113

Relativistically Thermal Plasma Generation by Magnetically Assisted Direct Laser Acceleration

K. WEICHMAN,¹ J. P. PALASTRO,¹ A. P. L. ROBINSON,² and A. V. AREFIEV³

Single-particle picture of heating Plasma **Temperature** *B*₀ (•) Long pulse Weibel instability [3 0.8 Unstable with Stable Re ω = 0 ⊢ 0.6 ▶ 0.4 Jnstable with bifurcation 0.2 (both Re ω = 0 with and Re *ω* ≠ 0) Re $\omega \neq 0$ Particle-in-cell simulation [7] 0.0 100 10³ 101 102 104 10-1 Nominal 2-D case (x - y) $(\omega_{ t p\pm}/\omega_{ t c\pm})^2$ *B*₀ = 500 T (in *z*) Hydrogen; $n_e = 10^{-3} n_c$ $L = 100 \ \mu m$ Long pulse: a_{ℓ} = 1, τ_{ℓ} = 0.8 ps Short pulse: $a_{\rm s}$ = 5, $\tau_{\rm s}$ = 20 fs Both: 100 μ m FWHM **Relativistically thermal plasma** TC16114 Lasts after Optically diagnosable? laser pulse? No L/ρ_{I} N/A (reversible) **10**⁰ Maybe Maybe **1-D** (surrounded by cold (requires higherfrequency probe) dense plasma) No No (surrounded by cold (structure blocks diagnostic access) dense plasma) No Yes (electrons escape) _____ Maybe 102 Yes $L\,(\mu{ m m})\cdot(B_0/500~{ m T})^{-3/2}$ TC16115 Yes Yes

SM-LWFA: self-modulated laser wakefield acceleration

500 **1** ρ_{L} References [1] A. Arefiev et al., Phys. Plasmas 27, 063106 (2020). [5] A. Arefiev, Z. Gong, and A. P. L. Robinson, Phys. Rev. E <u>101</u>, 043201 (2020). [8] K. Weichman *et al.*, Phys. Plasmas <u>29</u>, 053104 (2022). [2] G. Li, W. B. Mori, and C. Ren, Phys. Rev. Lett. <u>110</u>, 155002 (2013). [6] K. Weichman *et al.*, "Underdense Relativistically Thermal Plasma Produced by Magnetically Assisted [9] S. Fujioka *et al.*, Sci. Rep. <u>3</u>, 1170 (2013). [3] T.-Y. B. Yang, J. Arons, and A. B. Langdon, Phys. Plasmas <u>1</u>, 3059 (1994). Direct Laser Acceleration," Physics Archive: https://doi.org/10.48550/arXiv.2202.07015 (2022). [10] V. V. Ivanov et al., Matter Radiat. Extremes 6, 046901 (2021). [4] A. P. L. Robinson and A. V. Arefiev, Phys. Plasmas 27, 023110 (2020). [7] T. D. Arber et al., Plasma Phys. Control. Fusion <u>57</u>, 113001 (2015). This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority, and the DOE Office of Science under Grant No. DESC0018312. This work used HPC resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, under allocation TG-PHY190034 on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.

TC16116

Design basis

¹University of Rochester, Laboratory for Laser Energetics, ² STFC Rutherford Appleton Laboratory, ³University of California San Diego

Experimental verification is feasible with state-of-the-art technology

Capacitor coil magnetic field [9]/ELI Beamlines-like design				Pulsed-power magnetic field [10]/EP-OPAL-like design						
asis	Relevant scales	Plasma dimensions	Short pulse	Long pulse		Design basis	Relevant scales	Plasma dimensions	Short pulse	Long pulse
	$ ho_{L}pprox$ 40 μ m	$w_0 = 50 \ \mu m$	<i>a</i> _s = 5	$a_\ell = 1$		200 T	$ ho_{L}pprox$ 1 mm	$w_0 = 200 \ \mu m$	<i>a</i> _s = 6	<i>a</i> ℓ = 1
	$ au_{L}pprox$ 0.8 ps	$L = 200 \ \mu m$	$ au_{ m s}$ = 20 fs	$ au_{\ell}$ = 2 ps			${m au}_{\sf L}pprox$ 3.5 ps	<i>L</i> = 5 mm	$ au_{s}$ = 50 fs	$ au_{\ell}$ = 4 ps
		$n_{\rm e} = 10^{18} \ {\rm cm}^{-3}$	$\varepsilon_{s} = 15 J$	ε_{ℓ} = 90 J				<i>n</i> _e = 10 ¹⁸ cm ⁻³	$\varepsilon_s = 900 J$	$\varepsilon_{\ell} = 2 \text{ kJ}$

Motivation

- Relativistic electron motion significantly alters plasma dynamics, but experimental access is limited
 - non-perturbatively bulk-relativistic plasma is needed for verification of basic predictions and study of astrophysically relevant processes
 - examples
 - relativistic birefringence
 - parametric and beam-pointing instabilities
 - astrophysical shock acceleration
 - Weibel instability
 - co-occurring ultrahigh-intensity laser pulses obscure these phenomena

ntal access is limited ic predictions and study

Entering the non-perturbatively bulk-relativistic plasma regime requires a new type of laser-plasma heating

- Requirements
 - non-perturbatively bulk relativistic ($\gamma \approx 1$ for most electrons)
 - persistent after all driving laser pulses have passed
 - large volume
 - optically diagnosable density

Plasma-heating mechanisms	Heats majority of electrons in interaction volume?	Scalable to large volume?	Lasts after laser pulse?	Optically diagnosable?	
Direct laser acceleration (DLA) in vacuum	Yes	Yes	No (reversible)	N/A	
Near-critical plasma	Yes	No (propagation unstable)	Maybe (surrounded by cold dense plasma)	Maybe (requires higher- frequency probe)	
Structured target	Yes	Yes	No (surrounded by cold dense plasma)	No (structure blocks diagnostic access)	
Laser wakefield acceleration (LWFA)	No (hot tail)	Maybe	No (electrons escape)	Yes	
Stochastic DLA (e.g., SM-LWFA)	Maybe (requires large spot and long pulse)	Maybe (long pulse unstable)	Maybe (electrons escape)	Yes	
Magnetically assisted DLA	Yes	Yes	Yes	Yes	

Relativistically thermal plasma

Transverse magnetic fields break the usual DLA invariants, enabling energy retention, even in vacuum

$$B = 0 \qquad B \neq 0$$

$$\frac{d}{dt}(p_y - a) = 0 \qquad \frac{d}{d(\omega_0 t)}(p_y - a) = \frac{\omega_{c0}}{\omega_0}p_x$$

$$\frac{d}{dt}(\gamma - p_x) = 0 \qquad \frac{d}{d(\omega_0 t)}(\gamma - p_x) = \frac{\omega_{c0}}{\omega_0}p_y$$

• Regimes for energy retention, $\omega_{c0} \ll \omega_0$ - momentum rotation is slow compared to laser cycle, but not pulse duration [4] - momentum rotation affects electron interaction with a single laser cycle [5]

x-propagating, *y*-polarized laser pulse with applied $B_0 \hat{z}$; $\omega_{c0} = eB_0/mc$

Utilizing two laser pulses couples regimes of magnetically assisted direct laser acceleration, generating relativistically thermal, underdense plasmas [6]

Single-particle picture of heating

Step 1: multi-cycle acceleration by short pulse

Particle-in-cell simulation [7]

Nominal 2-D case (x - y) $B_0 = 500 \text{ T} (\text{in } z)$

Hydrogen; $n_{\rm e} = 10^{-3} n_{\rm c}$ $L = 100 \ \mu m$

Long pulse: a_{ℓ} = 1, τ_{ℓ} = 0.8 ps

Short pulse: $a_{\rm S}$ = 5, $\tau_{\rm S}$ = 20 fs

Both: 100 μ m FWHM

Multi-MeV plasma is predicted for a range of conditions [6,8]

TC16115

- Theoretical scaling
- Single kick by long pulse (max): $\Delta \gamma = 2^{3/2} a_s^{3/2} \sqrt{\omega_0/\omega_{c0}}$
- Threshold for heating by long pulse: $\gamma_0\gtrsim 0.3\,\sqrt{\omega_0/\omega_{c0}}$
- Average energy if fraction of electrons above γ_0 after short pulse is f_{hot} : $\langle \gamma \rangle \approx 0.6 f_{hot} \tau_{\ell} / \tau_{c0}$
- $au_{\mathsf{L}} \equiv 2\pi\Delta\gamma/\omega_{\mathsf{c0}} = \Delta\gamma \ au_{\mathsf{c0}}$ $ho_{\mathsf{L}} \equiv \mathsf{c} au_{\mathsf{L}}/2\pi$

Experimental verification is feasible with state-of-the-art technology

Capacitor coil magnetic field [9]/ELI Beamlines-like design

Design basis	Relevant scales	Plasma dimensions Short pulse		Long pulse	
500 T	$ ho_{L}pprox$ 40 μ m	<i>w</i> ₀ = 50 μm	a _s = 5	$a_\ell = 1$	
	$ au_{L}pprox$ 0.8 ps	<i>L</i> = 200 μm	$ au_{ m s}$ = 20 fs	$ au_{\ell}$ = 2 ps	
		$n_{\rm e} = 10^{18} {\rm cm}^{-3}$	ε_{s} = 15 J	ε_{ℓ} = 90 J	

References [1] A. Arefiev et al., Phys. Plasmas 27, 063106 (2020). [2] G. Li, W. B. Mori, and C. Ren, Phys. Rev. Lett. 110, 155002 (2013). [3] T.-Y. B. Yang, J. Arons, and A. B. Langdon, Phys. Plasmas <u>1</u>, 3059 (1994). [4] A. P. L. Robinson and A. V. Arefiev, Phys. Plasmas 27, 023110 (2020). [7] T. D. Arber et al., Plasma Phys. Control. Fusion 57, 113001 (2015).

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority, and the DOE Office of Science under Grant No. DESC0018312. This work used HPC resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, under allocation TG-PHY190034 on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.

Pulsed-power magnetic field [10]/EP-OPAL-like design

Design basis	Relevant scales	Plasma dimensions	Short pulse	Long pulse	
200 T	$ ho_{L}pprox$ 1 mm	$w_0 = 200 \ \mu m$	<i>a</i> _s = 6	<i>a</i> ℓ = 1	
	${m au}_{\sf L}pprox$ 3.5 ps	<i>L</i> = 5 mm	$ au_{s}$ = 50 fs	$ au_{\ell}$ = 4 ps	
		$n_{\rm e} = 10^{18} {\rm cm}^{-3}$	ε_{s} = 900 J	ε_{ℓ} = 2 kJ	

[5] A. Arefiev, Z. Gong, and A. P. L. Robinson, Phys. Rev. E <u>101</u>, 043201 (2020). [6] K. Weichman et al., "Underdense Relativistically Thermal Plasma Produced by Magnetically Assisted Direct Laser Acceleration," Physics Archive: https://doi.org/10.48550/arXiv.2202.07015 (2022).

[8] K. Weichman *et al.*, Phys. Plasmas <u>29</u>, 053104 (2022).

[9] S. Fujioka *et al.*, Sci. Rep. <u>3</u>, 1170 (2013).

[10] V. V. Ivanov et al., Matter Radiat. Extremes 6, 046901 (2021).

