Relativistically Thermal Plasma Generation by Magnetically Assisted Direct Laser Acceleration

K. WEICHMAN,1 J. P. PALASTRO,1 A. P. L. ROBINSON,2 and A. V. AREFIYEV3

1University of Rochester, Laboratory for Laser Energetics, 2STFC Rutherford Appleton Laboratory, 3University of California San Diego

Motivation

- Relativistic electron motion significantly alters plasma dynamics, but experimental access is limited
 - non-perturbatively bulk-relativistic plasma is needed for verification of basic predictions and study of astrophysically relevant processes
 - examples
 - relativistic bioengineering
 - parametric and beam-pointing instabilities
 - astrophysical shock acceleration
 - Weibel instability
 - co-occurring ultra-high-intensity laser pulses obscure these phenomena

Entering the non-perturbatively bulk-relativistic plasma regime requires a new type of laser-plasma heating

- Requirements
 - non-perturbative bulk relativistic ($y > 1$ for most electrons)
 - persistent after all driving laser pulses have passed
 - large volume
 - optically diagnosable density

Plasma-heating mechanism

<table>
<thead>
<tr>
<th>Plasma-heating mechanism</th>
<th>Owing majority of electrons to interaction volume?</th>
<th>Scalable in large volume?</th>
<th>Last after laser pulse?</th>
<th>Optimally diagnosable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client laser acceleration (DLA) in vacuum</td>
<td>Yes</td>
<td>Yes</td>
<td>Maybe (reversible)</td>
<td>NA</td>
</tr>
<tr>
<td>Near-critical plasma</td>
<td>Yes</td>
<td>No (propagation unstable)</td>
<td>Maybe (surrounded by cold dense plasma)</td>
<td>Maybe (requires high-frequency probe)</td>
</tr>
<tr>
<td>Structured target</td>
<td>Yes</td>
<td>Yes</td>
<td>No (surrounded by cold dense plasma)</td>
<td>No (structure blocks diagnostic access)</td>
</tr>
<tr>
<td>Laser wakefield acceleration (LWFA)</td>
<td>No (not tied)</td>
<td>Maybe</td>
<td>No (propagation unstable)</td>
<td>Maybe (electrons escape)</td>
</tr>
<tr>
<td>Structured DLA (e.g., 500-1000 kW, 10 ps)</td>
<td>Maybe (requires large spot and long pulse)</td>
<td>Maybe (long pulse unstable)</td>
<td>Maybe (electrons escape)</td>
<td>Yes</td>
</tr>
<tr>
<td>Magnetically assisted DLA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Multi-MeV plasma is predicted for a range of conditions

- Single-particle picture of heating
- Step 1: Multi-cycle acceleration by short pulse
- Step 2: energy kick by single cycle in long pulse
- The short pulse is needed to catalyze long-pulse heating

Multi-MeV plasma is predicted for a range of conditions

- Particle-in-cell simulation
 - Normal 3-D case ($y = 1$, $\delta = 300$ T, $\delta = 1.2$)
 - Hydrogen: $\alpha = 10^{-7}$, $\Delta = 100$ nm
 - Long pulse: $\delta = 10^{-7}, \, \alpha = 0.8$ ps
 - Short pulse: $\alpha = 10^{-7}, \, \Delta = 90$ fs
 - Both: 100 mm FWHM
 - Multi-MeV plasma is predicted for a range of conditions

- Theoretical scaling
 - Single kick by long pulse (max):
 - $\Delta \alpha = 2 \Delta^{-1/2} \Delta W^{1/2}$
 - Threshold for heating by long pulse:
 - $\Delta \alpha = 0.5 \Delta^{-1/2} \Delta W^{1/2}$

- Average energy of all electrons in $y > 3 \mu m$

Experimental verification is feasible with state-of-the-art technology

- Capacitor cell magnetic field (95) E-beamlines-like design
- Pulsed-power magnetic field (99) EP-ORAL-like design

Transverse magnetic fields break the usual DLA invariants, enabling energy retention, even in vacuum

$$B = 0$$

Regime for energy retention, $\alpha_{DLA} < 10^{-1}$

- momentum rotation is small compared to laser cycle, but not pulse duration
- momentum rotation affects electron interaction with a single laser cycle

x-propagating, y-polarized laser pulse with applied B_y, $A_{DLA} = 0$.
Motivation

- Relativistic electron motion significantly alters plasma dynamics, but experimental access is limited
 - non-perturbatively bulk-relativistic plasma is needed for verification of basic predictions and study of astrophysically relevant processes
 - examples
 - relativistic birefringence
 - parametric and beam-pointing instabilities
 - astrophysical shock acceleration
 - Weibel instability
 - co-occurring ultrahigh-intensity laser pulses obscure these phenomena

Relativistic birefringence \([1]\)

Hosing instability \([2]\)

Weibel instability \([3]\)
Entering the non-perturbatively bulk-relativistic plasma regime requires a new type of laser-plasma heating

- non-perturbatively bulk relativistic ($\gamma \approx 1$ for most electrons)
- persistent after all driving laser pulses have passed
- large volume
- optically diagnosable density

Plasma-heating mechanisms

<table>
<thead>
<tr>
<th>Plasmas heating mechanisms</th>
<th>Heats majority of electrons in interaction volume?</th>
<th>Scalable to large volume?</th>
<th>Lasts after laser pulse?</th>
<th>Optically diagnosable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct laser acceleration (DLA) in vacuum</td>
<td>Yes</td>
<td>Yes</td>
<td>No (reversible)</td>
<td>N/A</td>
</tr>
<tr>
<td>Near-critical plasma</td>
<td>Yes</td>
<td>No (propagation unstable)</td>
<td>Maybe (surrounded by cold dense plasma)</td>
<td>Maybe (requires higher-frequency probe)</td>
</tr>
<tr>
<td>Structured target</td>
<td>Yes</td>
<td>Yes</td>
<td>No (surrounded by cold dense plasma)</td>
<td>No (structure blocks diagnostic access)</td>
</tr>
<tr>
<td>Laser wakefield acceleration (LWFA)</td>
<td>No (hot tail)</td>
<td>Maybe</td>
<td>No (electrons escape)</td>
<td>Yes</td>
</tr>
<tr>
<td>Stochastic DLA (e.g., SM-LWFA)</td>
<td>Maybe (requires large spot and long pulse)</td>
<td>Maybe (long pulse unstable)</td>
<td>Maybe (electrons escape)</td>
<td>Yes</td>
</tr>
<tr>
<td>Magnetically assisted DLA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SM-LWFA: self-modulated laser wakefield acceleration
Transverse magnetic fields break the usual DLA invariants, enabling energy retention, even in vacuum

\[B = 0 \]
\[\frac{d}{dt}(p_y - a) = 0 \]
\[\frac{d}{dt}(y - p_x) = 0 \]

\[B \neq 0 \]
\[\frac{d}{d(\omega_0 t)}(p_y - a) = \frac{\omega_c}{\omega_0} p_x \]
\[\frac{d}{d(\omega_0 t)}(y - p_x) = \frac{\omega_c}{\omega_0} p_y \]

- Regimes for energy retention, \(\omega_c \ll \omega_0 \)
- momentum rotation is slow compared to laser cycle, but not pulse duration [4]
- momentum rotation affects electron interaction with a single laser cycle [5]

\(x \)-propagating, \(y \)-polarized laser pulse with applied \(B_0 \hat{z} \); \(\omega_c = eB_0/mc \)
Utilizing two laser pulses couples regimes of magnetically assisted direct laser acceleration, generating relativistically thermal, underdense plasmas [6].

Single-particle picture of heating

Step 1: multi-cycle acceleration by short pulse

Step 2: energy kicks by single cycle in long pulse

The short pulse is needed to catalyze long-pulse heating

Particle-in-cell simulation [7]
Nominal 2-D case ($x-y$)
$B_0 = 500 \ T$ (in z)
Hydrogen; $n_e = 10^{-3} \ n_c$
$L = 100 \ \mu m$

Long pulse:
$a_\phi = 1$, $t_\phi = 0.8 \ ps$

Short pulse:
$a_\phi = 5$, $t_\phi = 20 \ fs$

Both: 100 μm FWHM

Bulk-relativistic plasma is generated with 2-D isotropic momentum

Spectra for $|r| < 25 \ \mu m$

Hot plasma persists beyond laser pulse duration

Average energy of all electrons in $|r| < 25 \ \mu m$
Multi-MeV plasma is predicted for a range of conditions [6,8]

Theoretical scaling
Single kick by long pulse (max): \(\Delta y = 2^{3/2} \alpha_s^{3/2} \sqrt{\omega_0/\omega_{c0}} \)

Threshold for heating by long pulse: \(y_0 \geq 0.3 \sqrt{\omega_0/\omega_{c0}} \)

Average energy if fraction of electrons above \(y_0 \) after short pulse is \(f_{\text{hot}} \):
\[
\langle \gamma \rangle \approx 0.6 f_{\text{hot}} \frac{\tau_f}{\tau_{c0}}
\]

\(\tau_{c0} = 2 \Delta y/\omega_{c0} = \Delta y \tau_{c0} \)
\(\rho_L = c \tau_L / 2\pi \)

Heating can be improved from the 2-D case
Experimental verification is feasible with state-of-the-art technology.

References

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority, and the DOE Office of Science under Grant No. DESC0018312. This work used HPC resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548652, under allocation TG-PHY1900034 on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.