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Motivation

TC16111

• Relativistic electron motion signifi cantly alters plasma dynamics, but experimental access is limited
 – non-perturbatively bulk-relativistic plasma is needed for verifi cation of basic predictions and study 
of astrophysically relevant processes 

 – examples 
 - relativistic birefringence 
 - parametric and beam-pointing instabilities 
 - astrophysical shock acceleration 
 - Weibel instability

 – co-occurring ultrahigh-intensity laser pulses obscure these phenomena

Relativistic birefringence [1] Weibel instability [3] Hosing instability [2] 
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ĉM

(sp) (sp)

Entering the non-perturbatively bulk-relativistic plasma regime requires a new type of laser-plasma heating

TC16112

Plasma-heating 
mechanisms

Heats majority 
of electrons in 

interaction volume?
Scalable 

to large volume?
Lasts after 

laser pulse?
Optically 

diagnosable?

Direct laser 
acceleration (DLA) 
in vacuum

Yes Yes No 
(reversible) N/A

Near-critical plasma Yes
No 

(propagation 
unstable)

Maybe 
(surrounded by cold 

dense plasma)

Maybe 
(requires higher-
frequency probe)

Structured target Yes Yes
No 

(surrounded by cold 
dense plasma)

No 
(structure blocks 

diagnostic access)

Laser wakefi eld 
acceleration (LWFA) No (hot tail) Maybe No 

(electrons escape) Yes

Stochastic DLA 
(e.g., SM-LWFA)

Maybe 
(requires large spot 

and long pulse)
Maybe 

(long pulse unstable)
Maybe 

(electrons escape) Yes

Magnetically 
assisted DLA Yes Yes Yes Yes

• Requirements
 – non-perturbatively bulk relativistic (c á 1 for most electrons)
 – persistent after all driving laser pulses have passed
 – large volume
 – optically diagnosable density

Relativistically thermal plasma
y

SM-LWFA: self-modulated laser wakefi eld acceleration

Transverse magnetic fi elds break the usual DLA invariants, enabling energy retention, even in vacuum

TC16113

• Regimes for energy retention, ~c0 % ~0
 – momentum rotation is slow compared to laser cycle, but not pulse duration [4]
 – momentum rotation affects electron interaction with a single laser cycle [5]
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x-propagating, y-polarized laser pulse with applied B0ẑ; ~c0 = eB0/mc

Utilizing two laser pulses couples regimes of magnetically assisted direct laser acceleration, generating relativistically thermal, underdense plasmas [6]

TC16114

Single-particle picture of heating Step 1: multi-cycle acceleration
by short pulse

Step 2: energy kicks by single cycle 
in long pulse

The short pulse is needed to 
catalyze long-pulse heating
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Threshold 
from theory

Spectra for WrO < 25 nm Average energy of all electrons in WrO < 25 nm
Particle-in-cell simulation [7]

Nominal 2-D case (x – y)
B0 = 500 T (in z)

Hydrogen; ne = 10–3 nc
L = 100 nm 

Long pulse: 
a, = 1, x, = 0.8 ps

Short pulse: 
as = 5, xs = 20 fs

Both: 100 nm FWHM 

Bulk-relativistic plasma is generated with 2-D isotropic momentum Hot plasma persists beyond laser pulse duration
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Multi-MeV plasma is predicted for a range of conditions [6,8]

TC16115

Theoretical scaling

Single kick by long pulse (max): 
Dc = 23/2as

3/2   √ 
_

 ~0/~c0   

Threshold for heating by long pulse: 
c0 L 0.3   √ 

_
 ~0/~c0   

Average energy if fraction of electrons 
above c0 after short pulse is fhot: 
GcH á 0.6 fhot x,/xc0

xL / 2rDc/~c0 = Dc xc0

tL / cxL/2r

Heating can be improved from the 2-D case

Experimental verifi cation is feasible with state-of-the-art technology

TC16116
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Capacitor coil magnetic fi eld [9]/ELI Beamlines-like design Pulsed-power magnetic fi eld [10]/EP-OPAL-like design
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Design basis Relevant 
scales

Plasma 
dimensions Short pulse Long pulse

500 T tL á 40 nm w0 = 50 nm as = 5 a, = 1
xL á 0.8 ps L = 200 nm xs = 20 fs x, = 2 ps

ne = 1018  cm–3 fs = 15 J f, = 90 J

Design basis Relevant scales Plasma 
dimensions Short pulse Long pulse

200 T tL á 1 mm w0 = 200 nm as = 6 a, = 1
xL á 3.5 ps L = 5 mm xs = 50 fs x, = 4 ps

ne = 1018  cm–3 fs = 900 J f,    = 2 kJ



Motivation

TC16111

• Relativistic electron motion significantly alters plasma dynamics, but experimental access is limited
 – non-perturbatively bulk-relativistic plasma is needed for verification of basic predictions and study 
of astrophysically relevant processes 

 – examples 
 - relativistic birefringence 
 - parametric and beam-pointing instabilities 
 - astrophysical shock acceleration 
 - Weibel instability

 – co-occurring ultrahigh-intensity laser pulses obscure these phenomena
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ĉM

(sp) (sp)



Entering the non-perturbatively bulk-relativistic plasma regime requires a new type of laser-plasma heating

TC16112

Plasma-heating 
mechanisms

Heats majority  
of electrons in 

interaction volume?
Scalable  

to large volume?
Lasts after  

laser pulse?
Optically 

diagnosable?

Direct laser 
acceleration (DLA) 
in vacuum

Yes Yes No  
(reversible) N/A

Near-critical plasma Yes
No  

(propagation 
unstable)

Maybe  
(surrounded by cold 

dense plasma)

Maybe  
(requires higher-
frequency probe)

Structured target Yes Yes
No  

(surrounded by cold 
dense plasma)

No  
(structure blocks 

diagnostic access)

Laser wakefield 
acceleration (LWFA) No (hot tail) Maybe No  

(electrons escape) Yes

Stochastic DLA  
(e.g., SM-LWFA)

Maybe  
(requires large spot 

and long pulse)
Maybe  

(long pulse unstable)
Maybe  

(electrons escape) Yes

Magnetically 
assisted DLA Yes Yes Yes Yes

• Requirements
 – non-perturbatively bulk relativistic (c á 1 for most electrons)
 – persistent after all driving laser pulses have passed
 – large volume
 – optically diagnosable density

Relativistically thermal plasma
y

SM-LWFA: self-modulated laser wakefield acceleration



Transverse magnetic fields break the usual DLA invariants, enabling energy retention, even in vacuum

TC16113

• Regimes for energy retention, ~c0 % ~0
 – momentum rotation is slow compared to laser cycle, but not pulse duration [4]
 – momentum rotation affects electron interaction with a single laser cycle [5]
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   py

x-propagating, y-polarized laser pulse with applied B0ẑ; ~c0 = eB0/mc



Utilizing two laser pulses couples regimes of magnetically assisted direct laser acceleration, generating relativistically thermal, underdense plasmas [6]

TC16114

Single-particle picture of heating Step 1: multi-cycle acceleration 
by short pulse

Step 2: energy kicks by single cycle  
in long pulse

The short pulse is needed to 
catalyze long-pulse heating
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Nominal 2-D case (x – y)
B0 = 500 T (in z)

Hydrogen; ne = 10–3 nc
L = 100 nm 

Long pulse: 
a, = 1, x, = 0.8 ps

Short pulse: 
as = 5, xs = 20 fs

Both: 100 nm FWHM 

Bulk-relativistic plasma is generated with 2-D isotropic momentum Hot plasma persists beyond laser pulse duration
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Experimental verification is feasible with state-of-the-art technology
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Design basis Relevant 
scales

Plasma 
dimensions Short pulse Long pulse

500 T tL á 40 nm w0 = 50 nm as = 5 a, = 1
xL á 0.8 ps L = 200 nm xs = 20 fs x, = 2 ps

ne = 1018  cm–3 fs = 15 J f, = 90 J

Design basis Relevant scales Plasma 
dimensions Short pulse Long pulse

200 T tL á 1 mm w0 = 200 nm as = 6 a, = 1
xL á 3.5 ps L = 5 mm xs = 50 fs x, = 4 ps

ne = 1018  cm–3 fs = 900 J f,    = 2 kJ


