Beam Spray Thresholds in ICF-Relevant Plasmas

University of Rochester Laboratory for Laser Energetics 50th Anomalous Absorption Conference Skytop, PA 5-10 June 2022

Collaborators

J. Katz, A. L. Milder, A. Shvydky, & D. H. Froula University of Rochester Laboratory for Laser Energetics

D. E. Hinkel, P. Michel, T. Chapman, L. Divol, E. Kur, S. MacLaren, M. Rosen, & G. B. Zimmerman Lawrence Livermore National Laboratory

Beam spray measurements indicate thresholds ~2 to 15x less than expected based on the "filamentation figure of merit"*

- Questions raised during the 2020 ICF workshop hohlraum physics working group motivated a renewed look at filamentation/beam spray for possible impacts on indirect-drive ICF symmetry and drive
- Low thresholds were observed in OMEGA experiments, attributed to forward stimulated Brillouin scattering
 - The onset of beam spray was consistent in all cases with thresholds proposed by Grech *et al.*, with both weak ion-acoustic wave damping and thermally enhanced excitation of ion-acoustic waves contributing to the low thresholds**
- Frequency shifts were quantified and found to be comparable to those impacting implosion symmetry—a key concern if beam spray occurs outside the hohlraum laser entrance holes

Questions were recently raised about the possible influence of "filamentation", or beam spray, in certain hohlraum platforms*

Q: How is the beam impacted when in proximity to the FFOM threshold?

^{*} Hinkel, MacLaren, Rosen *et al.*, Hohlraum Physics Working Group, 2020 ICF Workshop. ** E. L. Dewald *et al.*, PPCF <u>44</u>, B405 (2005).

Various figures of merit have been proposed for predicting the onset of beam spray

- The filamentation figure of merit (FFOM) was determined from pF3D* simulations accounting for ponderomotive filamentation**
 - *FFOM* = $I_{13}\lambda^2 \frac{n_e}{n_c} \frac{3}{T_e} \left(\frac{f^{\#}}{8}\right)^2 > 1$ (DPP only)
 - − Claimed to have been validated experimentally[†] →
- The generalized, or Grech, figure of merit (GFOM), was based on a statistical model of forward stimulated Brillouin scattering (FSBS)[‡]
 - *GFOM* = 0. $1\gamma_T \left(\frac{\omega}{\nu}\right)_{IAW} I_{13}\lambda^2 \frac{n_e}{n_c} \frac{3}{T_e} \left(\frac{f^{\#}}{8}\right)^2 > 1$, with thermal enhancement factor $\gamma_T = 1 + 1.76 Z_{eff}^{5/7}(\rho_0/\lambda_{ei})$, ρ_0 the transverse speckle width, and λ_{ei} the e-i m.f.p.
 - Also claimed consistency with experiment[†] using $\gamma_T = 1.6$ and $\left(\frac{\nu}{\omega}\right)_{IAW} = 0.15$
 - FSBS as dominant mechanism was consistent with other prior literature[^]

Experiments had not been performed to break the degeneracy between the FFOM and GFOM

- ** E. L. Dewald et al., Plas. Phys. & Cont. Fus. 44, B405 (2005);
- [†] D. H. Froula *et al.*, Phys. Rev. Lett. <u>98</u>, 085001 (2007).
- [‡] M. Grech *et al.*, Phys. Rev. Lett. <u>102</u>, 155001 (2009).

^{*} R. L. Berger et al., Phys. Fluids B 5, 2243 (1993).

 [^] V. V. Elisseev *et al.*, Phys. Plasmas <u>4</u>, 4333(1997);
A. J. Schmitt & B. B. Afeyan, Phys. Plasmas <u>5</u>, 503 (1998);
A. V. Maximov *et al.*, Phys. Plasmas 8, 1319 (2001).

Experiments were performed using the LPI platform at OMEGA to study beam spray in more detail

Ω#	Gas	$\langle I_{14} \rangle$	n _e (10 ²⁰ cm ⁻³)	T _e (keV)	Trans. (%)	SBS (%)	SRS (%)	Abs. (%)	Total (%)
101402	N ₂	8.1	3.91	1.13	55.4	21.7	0.0	15.1	92.2
101403	N_2	17	3.98	1.23	40.1	37.2	0.0	12.9	90.2
101404	N_2	3.9	3.96	1.13	66.6	4.3	0.0	16.9	87.9
101406	CH₄	7.8	4.04	0.95	65.1	1.0	2.8	12.9	81.9
101407	CH ₄	16	3.86	1.01	56.0	5.3	4.5	10.0	75.8
101408	CH ₄	3.8	4.15	0.92	74.6	0.7	0.1	15.2	90.7
101413	CH₄	7.7	2.05	0.79	95.7	< 0.2	0.0	4.2	100.2
101414	CH₄	17	2.02	0.89	93.1	3.1	0.8	3.2	100.2
101415	CH ₄	3.8	2.26	0.75	93.6	< 0.2	0.0	5.9	99.7

Beam spray was quantified by finding the radial location with signal nearest 10% of a central value from an average radial lineout

The data are consistent with thresholds predicted by the GFOM, which are ~2 to 15x lower than would be expected from the FFOM

- Lower threshold in N₂ compared to CH₄, primarily due to weak ion-acoustic wave damping ($\frac{\nu}{\omega} = 0.02$) but also larger thermal enhancement factor ($\gamma_T = 3.1$)
 - Concavity suggests saturation from pump depletion
- Beam spray in CH turns on at higher intensity ($\frac{v}{\omega} \approx 0.1$)
- ~10% difference between CH datasets is consistent with their thermal enhancement factors ($\gamma_T = 2.3$ versus 2.1)

Transmitted-beam spectra were redshifted, confirming that FSBS is the dominant beam-spray mechanism

- Redshifts resulted from both the "Dewandre" shift* (dn/dt) and the classical FSBS shift
- Isolating the FSBS shift, the time-resolved data indicate that beam spray grows for ~100s of ps^{**}
 - SBS expected to reach steady state in $\tau \approx \frac{1}{v_{IAW}}$, and $v_{IAW} \propto \omega_{IAW} \approx kc_s$, so large τ implies small k (scattering angles <1°)
 - In turn, the total spray must result from multiple FSBS events[†]

^{*} T. Dewandre et al., Phys. Fluids 24, 528 (1981).

A. V. Maximov et al., Phys. Plasmas 8, 1319 (2001).

^{**} A. V. Maximov et al., Phys. Plasmas 8, 1319 (2001);

M. Grech et al., Phys. Rev. Lett. <u>102</u>, 155001 (2009).

[†] A. J. Schmitt & B. B. Afeyan, Phys. Plasmas <u>5</u>, 503 (1998);

The FSBS frequency shifts scale with the amount of spray, as expected

- Note there appears to be more to the story, with frequency shifts separately depending on composition and likely density at least
 - Data too sparse to identify all dependent variables affecting $\Delta \lambda$

Returning to the motivation*, beam spray could affect propagation, but the frequency shifts may be most concerning in terms of impacting symmetry

- For high-Z, the beam spray threshold *is* very low; however, spray is not explosive around FFOM~1
- However, the frequency shifts are substantial (~0.5 Å at 3ω, or ~1.5 Å at 1ω), and modern hohlraums are very sensitive to wavelength detuning (~20 to 50 µm-P2/Å at 1ω)^{**}
 - Loss of symmetry control due to interplay with crossed-beam energy transfer may be greatest risk

^{*} Hinkel, MacLaren, Rosen et al., Hohlraum Physics Working Group, 2020 ICF Workshop.

- ** A. L. Kritcher *et al.*, Phys. Rev. E <u>98</u>, 053206 (2018);
- L. A. Pickworth et al., Phys. Plasmas 27, 102702 (2020);
- A. L. Kritcher et al., Phys. Plasmas 28, 072706 (2021);
- A. B. Zylstra et al., Phys. Rev. Lett. 126, 025001 (2021);
- J. S. Ross et al., arXiv:2111.04640 (2021).

UR LLE

Beam spray measurements indicate thresholds ~2 to 15x less than expected based on the "filamentation figure of merit"*

- Questions raised during the 2020 ICF workshop hohlraum physics working group motivated a renewed look at filamentation/beam spray for possible impacts on indirect-drive ICF symmetry and drive
- Low thresholds were observed in OMEGA experiments, attributed to forward stimulated Brillouin scattering
 - The onset of beam spray was consistent in all cases with thresholds proposed by Grech *et al.*, with both weak ion-acoustic wave damping and thermally enhanced excitation of ion-acoustic waves contributing to the low thresholds**
- Frequency shifts were quantified and found to be comparable to those impacting implosion symmetry—a key concern if beam spray occurs outside the hohlraum laser entrance holes

The FSBS frequency shifts scale with the amount of spray, as expected

