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The ‘two-color’ filamentation technique provides a path to
high-energy, near-single-cycle terahertz pulses
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. Alaser pulse composed of a first and second harmonic can drive a time-dependent
current of photoionized electrons which generates broadband terahertz (THz) radiation

. A high-ionization potential, low-density background gas can enhance the THz radiation

properties for 100 TW class drive lasers by enabling a greater transient electron
current and mitigating beam breakup

. Early simulation results suggest a THz source with an energy greater than 1mdJ is
achievable with the 100 TW class MTW-OPAL laser at the LLE

A high-energy terahertz source could enable access to a novel regime where
bound electron nonlinear optics and relativistic plasma physics overlap
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Terahertz radiation lies in the ‘gap’ between electronic
and photonic sources
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THz radiation has many applications, such as

« Ultrafast optical switches
* Driving extreme nonlinear optics
* Non-invasive spectroscopy

Fukunaga et al. App. Phys. A (2010) 4




THz pulses can act as powerful, quasi-DC probes
for HED experiments
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A high-energy terahertz source could enable access to a ‘wavelength frontier’
where bound electron nonlinear optics and relativistic plasma physics overlap
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A high-energy terahertz source could enable access to a ‘wavelength frontier’
where bound electron nonlinear optics and relativistic plasma physics overlap

UR
LLE
102° ————rr——— e , I I
i 1 0.01 Laser field Electron velocity
=
= ]
; 15 >
L ~ 0 J
> 10 g
: i
3 o
=
] -0.01
+<—Optical— -
10[0 AT | T NPT | PR ] ] ]
10! 10" 1013 10" 10"3 0 /2 s 37/2 27
Frequency (Hz) Wot

In the optical range, the intensity for relativistic electron motion is much
greater than the intensity required for ionization

B ROCHESTER

©




A high-energy terahertz source could enable access to a ‘wavelength frontier’
where bound electron nonlinear optics and relativistic plasma physics overlap
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In the THz range, the intensity for relativistic electron motion is
comparable to the intensity required for ionization
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Photoionization by a monochromatic pulse produces no net
current, precluding terahertz generation
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Photoionization by an in-phase two-color pulse also produces no
net current, precluding terahertz generation
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The addition of an out-of-phase second harmonic breaks the field
symmetry and produces a net current of photoionized electrons
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Over the duration of a pulse, the time-dependence of the
lonization produces a time-dependent current
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The combination of ionization and the net drift velocity induced
by the asymmetric two-color field generates THz radiation

Kim et al., Optics Express (2007) 45
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How do we optimize the THz generation for 100
TW class laser pulses?
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The terahertz production for a high-power laser pulse can
be improved by using a high ionization potential gas

The field at electron birth scales with the gas ionization potential
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The terahertz production for a high-power laser pulse can
be improved by using a high ionization potential gas

The field at electron birth scales with the gas ionization potential
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The terahertz production for a high-power laser pulse can

be improved by using a high ionization potential gas
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The field at electron birth scales with the gas ionization potential

10'° [Max ionization
~ ' —_————— === ' For a 15fs drive pulse in 10"7/cc density gas,
N .
by Nitrogen, 15.6eV | N .
® Helium, 24.6eV | vg =~ 1.8X10°m/s
c 1010 i
2 vie ~ 3.6x10%m/s
N
5
- Increasing the intensity without increasing the ionization
10° potential does not result in a larger drift velocity
1014 lOIIS l016
Intensity (W/cm?)

UUUUUUUUUU

A higher ionization potential gas increases the electron
drift velocity and corresponding terahertz yield




A low-density gas can maximize the stability of the drive laser
pulse, in addition to promoting other favorable properties
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Lower gas densities increase the critical power, which
allow for more linear propagation and less beam break up
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A low gas density is required for mitigating beam
breakup of 100 TW class laser pulses

Fibich et al., Optics Express (2005) ,,
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Filamentary propagation can increase the THz yield by extending
the range of high intensity beyond a Rayleigh length

uUR

LLE

A laser pulse propagating in a medium with an
intensity-dependent refractive index will self-focus

Laser Intensity

Self-focusing
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Filamentary propagation can increase the THz yield by extending
the range of high intensity beyond a Rayleigh length
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The laser intensity will rise enough to ionize the
background gas, which defocuses the pulse

Plasma

Laser Intensity

Self-focusing Plasma defocusing
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Filamentary propagation can increase the THz yield by extending
the range of high intensity beyond a Rayleigh length
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Filamentation occurs when self-focusing is balanced by plasma
defocusing, resulting in a clamped intensity and spot size
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Filamentary propagation can increase the THz yield by extending
the range of high intensity beyond a Rayleigh length
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Terahertz radiation is emitted from each point
within the filament and constructively interferes
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Simple scalings suggest the number of freed electrons (and resulting
terahertz current) within a filament is independent of gas density
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e The filament area scales with the critical power, so the
filament area is inversely proportional to the gas density

A~P. /I Pe~1/ng  so, A~1/n,
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Simple scalings suggest the number of freed electrons (and resulting
terahertz current) within a filament is independent of gas density
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e The filament area scales with the critical power, so the
filament area is inversely proportional to the gas density

A~P. /I Pe~1/ng  so, A~1/n,
e The density of free electrons is proportional to the gas density

Ne~Ng
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Simple scalings suggest the number of freed electrons (and resulting
terahertz current) within a filament is independent of gas density
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Propagation and THz generation were modelled using the
unidirectional pulse propagation equation (UPPE)
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The UPPE evolves the electric field of an arbitrarily large frequency
domain, necessary to resolve both the drive laser harmonics and terahertz
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The terahertz is primarily produced via the transient plasma current
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Simulation parameters are chosen to study the terahertz yield for an
upcoming campaign on LLE’s MTW-OPAL laser
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Laser parameters | Value

SHG and Pro (TW) 00
Dichroic P, (TW) 80
MTW-OPAL 2w
< 50 torr He
74,15 fs waeplate A, (M) 920
| T (fs) 15
f/# 500
Species Helium
U; (eV) 24.6
ng (1017/cc) 1
P. (TW) 85




Preliminary simulations suggest that >1mdJ of THz energy can be
produced by two-color filamentation for MTW-OPAL parameters
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‘ e _ _ _ Summary and Conclusions
The ‘two-color’ filamentation technique provides a

path to high-energy, near-single-cycle terahertz pulses
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. Alaser pulse composed of a first and second harmonic can drive a time-dependent
current of photoionized electrons which generates broadband terahertz (THz) radiation

. A high-ionization potential, low-density background gas can enhance the THz properties

for 100 TW class drive lasers by enabling a greater transient electron current and
mitigating beam breakup

. Early simulation results suggest a THz source with an energy greater than 1mdJ is
achievable with the 100 TW class MTW-OPAL laser at the LLE

A high-energy terahertz source could enable access to a novel regime where
bound electron nonlinear optics and relativistic plasma physics overlap




