

High-energy, two-color terahertz generation

Tanner Simpson Laboratory for Laser Energetics University of Rochester 50th Anomalous Absorption Conference Skytop, Pennsylvania June 6-10, 2022

The 'two-color' filamentation technique provides a path to high-energy, near-single-cycle terahertz pulses

- A high-ionization potential, low-density background gas can enhance the THz radiation properties for 100 TW class drive lasers by enabling a greater transient electron current and mitigating beam breakup
- Early simulation results suggest a THz source with an energy greater than 1mJ is achievable with the 100 TW class MTW-OPAL laser at the LLE

A high-energy terahertz source could enable access to a novel regime where bound electron nonlinear optics and relativistic plasma physics overlap

Summary

Collaborators

J. Pigeon, R. Boni, M. Lim Pac Chong, D. Ramsey, K. Weichman, D.H. Froula, and J.P. Palastro

Terahertz radiation lies in the 'gap' between electronic and photonic sources

THz radiation has many applications, such as

- Ultrafast optical switches
- Driving extreme nonlinear optics
- Non-invasive spectroscopy

THz pulses can act as powerful, quasi-DC probes for HED experiments

ROCHESTER

*Chen et al., Nat. Comm. (2021) **Oforo-Okai et al., Rev. Sci. Inst. (2018) 5

A high-energy terahertz source could enable access to a 'wavelength frontier' where bound electron nonlinear optics and relativistic plasma physics overlap

A high-energy terahertz source could enable access to a 'wavelength frontier' where bound electron nonlinear optics and relativistic plasma physics overlap

In the optical range, the intensity for relativistic electron motion is much greater than the intensity required for ionization

A high-energy terahertz source could enable access to a 'wavelength frontier' where bound electron nonlinear optics and relativistic plasma physics overlap

In the THz range, the intensity for relativistic electron motion is comparable to the intensity required for ionization

Photoionization by a monochromatic pulse produces no net current, precluding terahertz generation

Photoionization by an in-phase two-color pulse also produces no net current, precluding terahertz generation

The addition of an out-of-phase second harmonic breaks the field symmetry and produces a net current of photoionized electrons

Over the duration of a pulse, the time-dependence of the ionization produces a time-dependent current

The combination of ionization and the net drift velocity induced by the asymmetric two-color field generates THz radiation

How do we optimize the THz generation for 100 TW class laser pulses?

The terahertz production for a high-power laser pulse can be improved by using a high ionization potential gas

The field at electron birth scales with the gas ionization potential

The terahertz production for a high-power laser pulse can be improved by using a high ionization potential gas

The field at electron birth scales with the gas ionization potential

For a 15fs drive pulse in 10¹⁷/cc density gas,

 $v_d^N \approx 1.8 \times 10^6 m/s$

The terahertz production for a high-power laser pulse can be improved by using a high ionization potential gas

The field at electron birth scales with the gas ionization potential

For a 15fs drive pulse in 10¹⁷/cc density gas,

 $v_d^N \approx 1.8 \times 10^6 m/s$

 $v_d^{He} \approx 3.6 \times 10^6 m/s$

Increasing the intensity without increasing the ionization potential does not result in a larger drift velocity

A higher ionization potential gas increases the electron drift velocity and corresponding terahertz yield

A low-density gas can maximize the stability of the drive laser pulse, in addition to promoting other favorable properties

Lower gas densities increase the critical power, which allow for more linear propagation and less beam break up

A low gas density is required for mitigating beam breakup of 100 TW class laser pulses

 $P_c^{He,3 Torr} \approx 80 TW$

 $P_c \propto 1/n_g$

Filamentary propagation can increase the THz yield by extending the range of high intensity beyond a Rayleigh length

A laser pulse propagating in a medium with an intensity-dependent refractive index will self-focus

Filamentary propagation can increase the THz yield by extending the range of high intensity beyond a Rayleigh length

The laser intensity will rise enough to ionize the background gas, which defocuses the pulse Phase Phase Plasma Laser Intensity Self-focusing Plasma defocusing $\Delta n = n_2 I$ $\Delta n \approx -N_e/2N_c$

Filamentary propagation can increase the THz yield by extending the range of high intensity beyond a Rayleigh length

Filamentation occurs when self-focusing is balanced by plasma defocusing, resulting in a clamped intensity and spot size

Filamentary propagation can increase the THz yield by extending the range of high intensity beyond a Rayleigh length

Terahertz radiation is emitted from each point within the filament and constructively interferes

Simple scalings suggest the number of freed electrons (and resulting terahertz current) within a filament is independent of gas density

• The filament area scales with the critical power, so the filament area is inversely proportional to the gas density

$$A \sim P_c/I_s$$
 $P_c \sim 1/n_g$ so, $A \sim 1/n_g$

• The density of free electrons is proportional to the gas density

 $n_e \sim n_g$

• The number of free electrons per unit length is determined by multiplying the free electron density by the filament area

$$\frac{N_f}{\delta z} = n_e A \sim \frac{n_g}{n_g} \sim const$$

Ionization simulations reproduce the simple scalings: freed electrons are not lost by going to low density

LLE

Simple scalings suggest the number of freed electrons (and resulting terahertz current) within a filament is independent of gas density

• The filament area scales with the critical power, so the filament area is inversely proportional to the gas density

$$A \sim P_c/I_s$$
 $P_c \sim 1/n_g$ so, $A \sim 1/n_g$

• The density of free electrons is proportional to the gas density

 $n_e \sim n_g$

• The number of free electrons per unit length is determined by multiplying the free electron density by the filament area

$$\frac{N_f}{\delta z} = n_e A \sim \frac{n_g}{n_g} \sim const$$

Ionization simulations reproduce the simple scalings: freed electrons are not lost by going to low density

Simple scalings suggest the number of freed electrons (and resulting terahertz current) within a filament is independent of gas density

• The filament area scales with the critical power, so the filament area is inversely proportional to the gas density

$$A \sim P_c/I_s$$
 $P_c \sim 1/n_g$ so, $A \sim 1/n_g$

• The density of free electrons is proportional to the gas density

 $n_e \sim n_g$

• The number of free electrons per unit length is determined by multiplying the free electron density by the filament area

$$\frac{N_f}{\delta z} = n_e A \sim \frac{n_g}{n_g} \sim const$$

Ionization simulations reproduce the simple scalings: freed electrons are not lost by going to low density

Propagation and THz generation were modelled using the unidirectional pulse propagation equation (UPPE)

The UPPE evolves the electric field of an arbitrarily large frequency domain, necessary to resolve both the drive laser harmonics and terahertz

The terahertz is primarily produced via the transient plasma current

$$\frac{\partial J}{\partial t} = \frac{e^2}{m_e} N_e E + \mathbf{v}_{\rm EN} \mathbf{J}$$

Simulation parameters are chosen to study the terahertz yield for an upcoming campaign on LLE's MTW-OPAL laser

Laser parameters	Value
$P_{1\omega}$ (TW)	400
$P_{2\omega}$ (TW)	80
$\lambda_{1\omega}$ (nm)	920
au (fs)	15
<i>f</i> / #	500

Gas parameters	Value
Species	Helium
U_I (eV)	24.6
$n_g~(10^{17}/{ m cc})$	1
P_c (TW)	85

Preliminary simulations suggest that >1mJ of THz energy can be produced by two-color filamentation for MTW-OPAL parameters

UR 🔌

The 'two-color' filamentation technique provides a path to high-energy, near-single-cycle terahertz pulses

- A laser pulse composed of a first and second harmonic can drive a time-dependent current of photoionized electrons which generates broadband terahertz (THz) radiation
- A high-ionization potential, low-density background gas can enhance the THz properties for 100 TW class drive lasers by enabling a greater transient electron current and mitigating beam breakup
- Early simulation results suggest a THz source with an energy greater than 1mJ is achievable with the 100 TW class MTW-OPAL laser at the LLE

A high-energy terahertz source could enable access to a novel regime where bound electron nonlinear optics and relativistic plasma physics overlap

