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Exact solutions to Maxwell’s equations have been derived for 
flying focus pulses

• Propagating the fields backwards in space reveals the space-time profile that an 
optical assembly must produce to realize these solutions in the laboratory

• Flying focus pulses provide velocity control and an extended range of high intensity 
that can enable or enhance a wide-range of laser-based applications

• The exact fields were derived by combining the complex source-point method with 
the invariance of Maxwell’s equations under a Lorentz transformation

Summary

The exact solutions can be used for accurate calculations of charged 
particle motion for advanced accelerators or radiation sources
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Spatiotemporal pulse shaping can produce a moving, or “flying,” focus 
over distances much greater than a Rayleigh range

The chromatic optic and chirp determine the focal location and time of each color, 
respectively, resulting in a peak intensity with a dynamic trajectory
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Analysis of flying focus applications often use a simplified representation 
of the electromagnetic field structure

D. Ramsey et al. Phys. Rev. E (2022)D. Ramsey et al. Phys. Rev. E (2020)

Assessing the validity of the simplified representations requires an accurate 
description of the electromagnetic field

J.P. Palastro –
Immediately following 
(11:40AM)
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The Hertz vectors provide a natural, closed form representation for 
waves driven by dipole sources
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Consider magnetic and electric dipole sources,



7

2 ˆ( ) ( ) i t
tt e e kd -Ñ -¶ P =e r 2 ˆ( ) ( ) i t

tt m e kd -Ñ -¶ P =m r

The Hertz vectors provide a natural, closed form representation for 
waves driven by dipole sources

t e m= ¶ +Ñ´A P P

eF = -Ñ×P

( )

ˆ
4

i r t

e
e

r

k

p

-

= eP
( )

ˆ
4

i r t

m
e

r

k

p

-

= mP

The four potentials,

Consider magnetic and electric dipole sources,
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The fields,

Consider magnetic and electric dipole sources,
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The complex source-point method transforms spherical wave 
solutions into beam solutions

Solutions to Maxwell’s equations remain solutions under coordinate translations, 
real or imaginary

Rz z iZ® -

Spherical wave Focused continuous wave
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The complex source-point method transforms spherical wave 
solutions into beam solutions

Solutions to Maxwell’s equations remain solutions under coordinate translations, 
real or imaginary

Spherical wave Focused continuous wave

RZ

Rz z iZ® -
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There exists a frame of reference in which the focus moves at a 
constant velocity

Maxwell’s equations are invariant 
under a Lorentz coordinate 
transformation
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These laser fields are a flying focus



12

Spherical wave Focused  
waveComplex coordinate 

translation
Lorentz 

transformation

Flying focus

A stationary focus in one frame of reference is a flying focus in 
another frame of reference
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The prescribed method can generate all six components of the electromagnetic 
field for arbitrary polarization and orbital angular momentum

Forward subluminal (𝛽 = 0.5), linearly polarized (&𝐱), ℓ = 0
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The prescribed method can generate all six components of the electromagnetic 
field for arbitrary polarization and orbital angular momentum

Backwards subluminal (𝛽 = −0.99), linearly polarized (&𝐱), ℓ = 1
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The prescribed method can generate all six components of the electromagnetic 
field for arbitrary polarization and orbital angular momentum

Forward superluminal (𝛽 = 2), circularly polarized, ℓ = 0
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Finite energy, i.e., pulse, solutions can be found by superposing 
modal solutions

Schematically

1k

2k
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The pulse duration, 𝑇 sets the focal range, 𝐿
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Maintaining a fixed focal range requires 
changing the pulse duration with the 
velocity

Pulse like solutions limit the range over which the intensity is nearly 
constant, i.e., the “focal range”
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Propagating the field backwards in space provides the initial 
amplitude and phase required to create a flying focus pulse

1
df L
dt T

b
b

= =
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𝛽 = 0.5, linearly polarized (&𝐱), ⁄𝑧 𝐿 = −5

The flying focus is formed by a time-dependent focal length
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Exact solutions to Maxwell’s equations have been derived for 
flying focus pulses

• Propagating the fields backwards in space reveals the space-time profile that an 
optical assembly must produce to realize these solutions in the laboratory

• Flying focus pulses provide velocity control and an extended range of high intensity 
that can enable or enhance a wide-range of laser-based applications

• The exact fields were derived by combining the complex source-point method with 
the invariance of Maxwell’s equations under a Lorentz transformation

Summary

The exact solutions can be used for accurate calculations of charged 
particle motion for advanced accelerators or radiation sources
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Selecting Hertz vectors that satisfy the wave equation results in electromagnetic fields 
that satisfy Maxwell’s equations

Consider a crossed magnetic and electric 
dipole source,
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The pulse duration, 𝑇 sets the focal range, 𝐿
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Maintaining a fixed focal range requires 
changing the pulse duration with the velocity

𝛽
=
−
0.99

0.99b = -

Pulse like solutions limit the range over which the intensity is nearly 
constant, i.e., the “focal range”
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Why does the pulse duration drop for negative focal velocities?
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While the time in which the pulse body coincides with the focus is less, 

the faster focus is faster
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The pulse duration does not need to be as long to support the focal range of faster moving foci


