Cross-beam energy transfer saturation by ion trapping-induced detuning

Khanh Linh Nguyen
Laboratory for Laser Energetics, University of Rochester
Los Alamos National Laboratory

50th Anomalous Absorption Conference
Skytop, PA
Jun 5th-10th, 2022
Collaborators

L. Yin and B. Albright
CBET can saturate through resonance detuning as a result of trapped-ion modifications to the ion distribution functions

- Experiments on the OMEGA LPI platform (TOP9) have provided the first measurements of CBET saturation by ion heating*

- Collisional VPIC simulations indicate that the saturation mechanism depends on the phase velocity of the driven ion-acoustic wave (IAW)**

 - For small IAW phase velocity, rapid thermalization causes a blueshift in the resonant IAW frequency

 - For large IAW phase velocity, persistent trapping-induced tails in the ion distribution functions redshift the resonance IAW frequency

- Preliminary simulations for OMEGA relevant parameters reveal that pump depletion saturates CBET at densities above quarter critical

Cross-beam energy transfer (CBET) is the exchange of energy between two laser beams mediated by their mutually driven ion acoustic wave (IAW).

Linear CBET theory predicts maximum energy transfer when the detuning frequency of the laser beams is equal to the Doppler-shifted frequency of the IAW.
CBET plays a critical role in laser-based inertial confinement fusion

- **Direct drive**: CBET scatters laser light away from the target, reducing absorption
- **Indirect drive**: CBET can be used to tune the symmetry of the implosion
CBET saturation has been observed in past experiments but insufficient diagnostic tools have limited physics understanding

- At resonance, measurements of the power transmitted in the probe beam show a decrease in the amplification as the probe intensity increases*

CBET saturation has been observed in past experiments but insufficient diagnostic tools have limited physics understanding

- At resonance, measurements of the power transmitted in the probe beam show a decrease in the amplification as the probe intensity increases*

- Linear theory agreed with CBET amplification measurements for weaker probe energies, but a clear deviation is observed at the highest probe energy

Previous computational studies have revealed that stochastic ion heating can saturate CBET.

An ensemble of IAWs driven by many overlapping laser beams stochastically heats the ions, which increases the ion sound speed and detunes the CBET resonance.*

The TOP9 OMEGA LPI platform* was developed for focused studies of CBET, including saturation

The TOP9 OMEGA LPI platform* was developed for focused studies of CBET, including saturation.

- Gas-Jet produces a highly uniform plasma, characterized by Thomson scattering.

The TOP9 OMEGA LPI platform* was developed for focused studies of CBET, including saturation.

- Gas-Jet produces a highly uniform plasma, characterized by Thomson scattering.
- TOP9 Laser can be tuned over 3 nm to map out the CBET resonance.

The TOP9 OMEGA LPI platform* was developed for focused studies of CBET, including saturation

- Gas-Jet produces a highly uniform plasma, characterized by Thomson scattering
- TOP9 Laser can be tuned over 3 nm to map out the CBET resonance
- Transmitted beam diagnostic (TBD) measures the energy transfer

The time-dependent CBET gain was measured for two different configurations: (1) Near perpendicular/small IAW v_p.
The time-dependent CBET gain was measured for two different configurations: (1) Near perpendicular/small IAW ν_p.

The increase in ion temperature detunes the resonant IAW frequency, leading to CBET saturation.
The time-dependent CBET gain was measured for two different configurations: (2) Near co-propagating/large IAW v_p
The time-dependent CBET gain was measured for two different configurations: (2) Near co-propagating/large IAW v_p

- $\theta = 21^\circ$
- k_{Pump}
- k_{IAW}
- k_{TOP9}

The time-dependent CBET gain was measured for two different configurations: (2) Near co-propagating/large IAW v_p

CBET saturates due to pump depletion

$\theta = 21^\circ$
Collisional VPIC simulations were performed to understand the underlying physics of CBET saturation for the two configurations: (1) Small IAW \(v_p \)

The large crossing angle and low plasma density result in a “small” IAW phase velocity \((v_p \approx 0.54 \text{ c}_s) \)

Here, \(c_s = \sqrt{\frac{Z T_e + 3 T_i}{M_i}} \) is the sound speed

Plasma parameters

- \(n_{e0} = 6.0 \text{e}19 \text{ cm}^{-3} \) (0.6\% \(n_{cr} \))
- H (55\%) and N (45\%)
- \(T_e = 600 \text{ eV} \) and \(T_i = 150 \text{ eV} \)

Laser parameters

- Crossing angle = 99°
- \(\lambda = 351 \text{ nm} \) (pump wavelength)
- Detuning: \(\Delta \lambda = 2.500 \text{ A} \)
- \(I_{\text{pump}} = 2.2 \text{e}15 \text{ W/cm}^2 \)
- \(I_{\text{seed}} = 5.0 \text{e}14 \text{ W/cm}^2 \)
On the fast-time scale, CBET saturates due to transverse breakup of the ion-acoustic wave.

- Transverse breakup of the IAW is caused by the trapped particle modulational instability (TPMI)*
On the fast-time scale, CBET saturates due to transverse breakup of the ion-acoustic wave

- Transverse breakup of the IAW is caused by the trapped particle modulational instability (TPMI)*
- The breakup allows for rapid dissipation of IAW energy, which limits the amplitude of the IAWs and inhibits energy transfer

Over longer time scales, ion-ion collisions rapidly thermalize the trapping-induced modifications to the ion distribution function.

- The IAW traps many more H ions than N ions.
- Nevertheless, the N temperature increases by a factor of 3.2, while the H temperature only increases by a factor of 1.6.
- Rapid H-N collisions allow the H ions to quickly transfer energy to the N ions, while the slower N-H collisions inhibit the N ions from giving energy to H ions.
The rapid thermalization causes the resonant IAW frequency to blueshift.

The gain drops over time as the resonant frequency continues to blueshift.
Collisonal VPIC simulations were performed to understand the underlying physics of CBET saturation for the two configurations: (1) Large IAW v_p

Plasma parameters

$n_{e0} = 1.10e20$ cm$^{-3}$ (1.2% n_{cr})

H (55%) and N (45%)

$T_e = 840$ eV and $T_i = 130$ eV

Laser parameters

Crossing angle = 21.4°

$\lambda = 351$ nm

Detuning: $\Delta \lambda = 1.100$ A

$I_{pump} = 2.2e15$ W/cm2

$I_{seed} = 5.0e14$ W/cm2

The small crossing angle and high plasma density result in a “large” IAW phase velocity ($v_p \approx 0.85$ c$_s$)

Here, $c_s = \sqrt{\frac{ZT_e + 3T_i}{M_i}}$ is the sound speed

On the fast-time scale, CBET saturate due to transverse breakup of the ion-acoustic wave.

On the fast-time scale, CBET saturate due to transverse breakup of the ion-acoustic wave.

- Transverse breakup allows for rapid dissipation of IAW energy, which limits the amplitude of the IAWs and inhibits energy transfer.
Over longer time scale, the larger velocity of trapped ions weakens the collisionality and slows thermalization

- The H and N temperatures increase nearly in unison by a factor of ~2.0
- The energy exchange rates between the H and N are nearly equal ($\nu^{HN} \approx \nu^{NH}$)
- The weak collisionality allows the trapping induced modifications to the distribution functions to persist over longer time scales
The persistent trapping-induced tails in the ion distribution functions result in a small redshift to the resonance IAW frequency.

Redshifting of the resonant frequency causes a slight drop in the gain over the interaction time.
Collisional VPIC simulations are now being performed to model CBET in conditions relevant to OMEGA implosions.

- CBET resonance is achieved by a plasma flow

Plasma parameters
- n_{e0} varies
- H (50%) and C (50%)
- $T_e = 2.5$ keV and $T_i = 1.2$ keV

Laser parameters
- $\lambda = 351$ nm (pump wavelength)
- $F\# = 6.7$
- Beam width = 20 μm
- $I_{pump} = I_{seed} = 2.0e14$ W/cm2
Near 30% critical density, CBET coupling is maximized in a near-perpendicular beam geometry.
CBET gain saturates due to pump depletion near 30% critical density and no significant ion heating is observed.

The lower intensities and higher temperatures result in smaller amplitude IAWs, which reduces ion trapping and increases in the ion temperature.
CBET can saturate through resonance detuning as a result of trapped-ion modifications to the ion distribution functions

- Experiments on the OMEGA LPI platform (TOP9) have provided the first measurements of CBET saturation by ion heating*

- Collisional VPIC simulations indicate that the saturation mechanism depends on the phase velocity of the driven ion-acoustic wave (IAW)**
 - For small IAW phase velocity, rapid thermalization causes a blueshift in the resonant IAW frequency
 - For large IAW phase velocity, persistent trapping-induced tails in the ion distribution functions redshift the resonance IAW frequency

- Preliminary simulations for OMEGA relevant parameters reveal that pump depletion saturates CBET at densities above quarter critical

Backup
CBET can saturate through resonance detuning when trapped-ion modifications to the ion distribution functions detune the resonance

- Experiments on the OMEGA LPI platform (TOP9) have provided the first measurements of CBET saturation by ion heating*

- Collisional VPIC simulations indicate that the saturation mechanism depends on the phase velocity of the driven ion-acoustic wave (IAW)**

 - For small IAW phase velocity, rapid thermalization causes a blueshift in the resonant IAW frequency

 - For large IAW phase velocity, persistent trapping-induced tails in the ion distribution functions redshift the resonance IAW frequency

- Preliminary simulations for OMEGA relevant parameters reveal that the nonlinear evolution of CBET depends on the plasma density

For OMEGA conditions, CBET coupling is maximized near 30% critical density.