
1

Assessment of Radiation Trapping in Inertial Confinement Fusion
Implosion Experiments with High-Z–Lined, Single-Shell Targets 

R. Epstein
University of Rochester
Laboratory for Laser Energetics

50th Anomalous Absorption Conference
Skytop, PA

5–10 June 2022



2

Summary

• Radiation trapping is most apparent in simulations through a characteristic Marshak waveform, where 
radiation and electron temperatures are equal (TR = Te), indicating the LTE atomic-radiative limit

• The Marshak wave model describes radiation trapping in pusher layers
in terms of useful characteristic quantities

• The self-similar form and characteristic parameters of the Marshak wave model are obtained in 
cylindrical and spherical geometries

• The classic Marshak wave extends to a uniformly compressing pusher layer, preserving its self-similar 
analytic form with modified time scaling and modified parameter values

Radiation trapping by an ICF pusher layer is being explored for new 
platforms for radiation transport and volume-ignition-related experiments

Volume-ignition capsule designs rely on radiation trapping.

____________
ICF: inertial confinement fusion
LTE: local thermodynamic equilibrium
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The Marshak wave is based on a simple balance of electron thermal energy 
and radiative heating near local thermodynamic equilibrium (LTE)

The appearance of LTE, e.g., Te = TR , is a sign of “trapped” radiation.
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The constant-density planar Marshak wave problem has a self-similar 
temperature profile solution

The “constant-flux” approximation is accurate and gives a useful 
expression for pretty much every quantity of interest.
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Constant-flux approximation

Boundary conditions
At 𝝃 = 0: conserve energy and g(0) = 1
At 𝝃 = 𝝃0: zero temperature
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The Marshak wave model yields several useful characteristic quantities, 
particularly tt = 1, the formation time of a one-optical-thickness wave

• Optical thickness time scale: the time of formation of a tR = 1 trapping layer is the key time scale
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• The trapped flux FR and the trapped energy ER vary on this time scale
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Pure-CH OMEGA-scale imploded shells do not trap radiation

• High-yield shot 90288
• Radiation source r < 22 µm
• Near-free escape of radiation through the DT shell
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A 6-𝝁m Cu inner pusher layer traps radiation through bang time as seen
in a LILAC simulation where TR = Te indicates optically thick LTE

TR = Te indicates LTE and a Planck spectrum, key assumptions underlying the Marshak wave model.
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Marshak wave “𝝉 = 1” formation times for Cu are short relative
to the pusher hydro time, but far too long for a pure-CH shell

The “𝝉 = 1” formation time is a parameter that anticipates the 
effectiveness of radiation trapping in an imploding pusher layer.

t sim 
(ns) T0 (keV) 𝝆 (g/cm3) t (𝝉 = 1) 

(ps)

Cu 2.21 0.60 12.8 5.5

Cu 2.27 1.12 60.5 3.6

Cu 2.33 1.77 239.0 2.7

CH 2.33 1.12 57.0 66.8
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Marshak waves have nearly identical wavefronts in planar, cylindrical, and 
spherical geometries, but very different g(x) = T/T0 profiles 
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• In cylindrical and spherical geometry, T0 is not a good fuel/pusher boundary condition 
parameter; it is fixed at a definite point in 𝝃, but not in space or time
• A better boundary condition is the total radiated power at or near 𝝃 = 0
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Marshak waves have the same trajectory and flux trapping parameter in all three 
geometries, all expressed in terms of the optical thickness formation time tt
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All geometries have the same wavefront trajectory:                        .
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The Marshak wavefront has nearly identical trajectories and optical thicknesses 
in planar, cylindrical, and spherical geometries 
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The Marshak wave* is a self-similar solution to the Euler fluid energy equation 
including thermal radiation transport and adiabatic compression

The Marshak wave profile and trajectory are described approximately but completely.
____________
* R. E. Marshak, Phys. Fluids 1, 24 (1958).
** A. P. Cohen et al., Phys. Rev. Research 2, 023007 (2020).
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The Marshak wave model yields several useful characteristic quantities

• Optical thickness time scale:  The time of formation of a tR = 1 trapping layer is the key time scale

tτ =1 = [
6(1+ν)
ξ0

2(4 + n)
Ε th

ΕR

1
cκ 0

t0
αψ ]1/(1+αψ ) ΕR =

4σ SBT0
4

c

FR(t) ≈
cΕR
3

tτ =1 t( )1/2 t t0( )
α
2

γ −1( )(5+n+q)
(1+q)

−r−s(4+n)
(1+q)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ tτ =1 t0( )

α
2

γ −1( )(3−n−q)
(1+q)

+r−s(4−n)
(1+q)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ε th =
C0T0
1+ q

a

r r
æ ö

= ç ÷
è ø

0
0

t(t)
t

( )g
n a

æ ö- + -
= - -ç ÷

+è ø

1 (3 n q)
s r

(1 q)

ψ =
γ −1− s( )(3 − n− q)

(1+ q)
+ r − s

• Optical thickness grows faster:

τ (t) = t tτ =1( )
1
2
+α
2

γ −1−s( )(3−n−q)
(1+q)

+2n
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

• The trapped flux varies on this time scale more slowly:

• Again, compression sets the time scale t0 and the power-law index a
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Summary/Conclusions

• Radiation trapping is most apparent in simulations through a characteristic Marshak waveform, where 
radiation and electron temperatures are equal (TR = Te), indicating the LTE atomic-radiative limit

• The Marshak wave model describes radiation trapping in pusher layers
in terms of useful characteristic quantities

• The self-similar form and characteristic parameters of the Marshak wave model are obtained in 
cylindrical and spherical geometries

• The classic Marshak wave extends to a uniformly compressing pusher layer, preserving its self-similar 
analytic form with modified time scaling and modified parameter values

Radiation trapping by an ICF pusher layer can be
characterized in terms of a Marshak wave model

Volume-ignition capsule designs rely on radiation trapping.
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Rosseland mean opacity and specific heat for Cu is obtained from PrOpacEOS* 
and fit with an expression suitable for the Marshak wave model

____________
* PrOpacEOS: Prism Computational Sciences, Inc.

κ =κ 0 ρ ρ0( )r T T0( )−nCV = C0 ρ ρ0( )s T T0( )q

Fit:  CV = 1.33 × 104 × (T/eV)1/3 (J/g/eV) Fit:  kR = 5.0 × 107 × (T/eV)–2 (cm2/g)

r ≠ 0 and s ≠ 0 anticipates time-varying 𝝆


