### Assessment of Radiation Trapping in Inertial Confinement Fusion Implosion Experiments with High-Z–Lined, Single-Shell Targets



R. Epstein University of Rochester Laboratory for Laser Energetics 50<sup>th</sup> Anomalous Absorption Conference Skytop, PA 5–10 June 2022



Summary

# Radiation trapping by an ICF pusher layer is being explored for new platforms for radiation transport and volume-ignition-related experiments

- Radiation trapping is most apparent in simulations through a characteristic Marshak waveform, where radiation and electron temperatures are equal ( $T_R = T_e$ ), indicating the LTE atomic-radiative limit
- The Marshak wave model describes radiation trapping in pusher layers in terms of useful characteristic quantities
- The self-similar form and characteristic parameters of the Marshak wave model are obtained in cylindrical and spherical geometries
- The classic Marshak wave extends to a uniformly compressing pusher layer, preserving its self-similar analytic form with modified time scaling and modified parameter values

Volume-ignition capsule designs rely on radiation trapping.

ICF: inertial confinement fusion LTE: local thermodynamic equilibrium



#### **Collaborators**



V. N. Goncharov, S. X. Hu, D. Cao, A. Shvydky, P. W. McKenty, G. W. Collins, and D. Haberberger

> University of Rochester Laboratory for Laser Energetics



### The Marshak wave is based on a simple balance of electron thermal energy and radiative heating near local thermodynamic equilibrium (LTE)

**Begin** with radiation spectral energy density:  $\frac{1}{c}\frac{\partial\phi_{\nu}}{\partial t} = \frac{\varepsilon_{\nu}}{c} - \kappa_{\nu}\phi_{\nu} + \frac{\partial}{\partial x}\left(\frac{1}{3\kappa_{\nu}}\frac{\partial\phi_{\nu}}{\partial x}\right)$ and thermal energy:  $C_{\nu}\frac{\partial T_{e}}{\partial t} = \int \left(-\frac{\varepsilon_{\nu}}{c} + \kappa_{\nu}\phi_{\nu}\right) d\nu$ **Assume quasi-static radiation:**  $\frac{1}{2} \frac{\partial \phi_{\nu}}{\partial t} \approx 0$ **Define the radiation temperature:**  $E_R = \frac{4\sigma_{SB}}{c} T_R^4 = \int \varphi_v dv$ Assume detailed balance:  $\varepsilon_v \approx 4\pi\kappa_v B_v (T_e)$  and LTE:  $\varphi_v \approx \frac{4\pi}{c} B_v (T_e)$ which gives:  $\sigma_{SB}T_e^4 = \pi \int B_v(T_e) dv$  or  $T_B \approx T_e \equiv T$ 

Obtain the wave equation:

$$\mathbf{C}_{\mathsf{V}} \frac{\partial \mathsf{T}}{\partial \mathsf{t}} \approx \frac{\partial}{\partial \mathsf{x}} \left( \frac{\mathsf{c}}{3\kappa_{\mathsf{R}}} \frac{\partial}{\partial \mathsf{x}} \left( \frac{4\sigma_{\mathsf{SB}}}{\mathsf{c}} \mathsf{T}^{\mathsf{4}} \right) \right)$$

Define the Rosseland1mean opacity  $\kappa_{\rm R}$ : $\frac{1}{\kappa_{\rm p}}$ 

$$\int \frac{\partial \mathsf{B}_{v}(\mathsf{T})}{\partial \mathsf{T}} \mathsf{d}v \equiv \int \frac{1}{\kappa_{v}} \frac{\partial \mathsf{B}_{v}(\mathsf{T})}{\partial \mathsf{T}} \mathsf{d}v$$

The appearance of LTE, e.g.,  $T_e = T_R$ , is a sign of "trapped" radiation.



### The constant-density planar Marshak wave problem has a self-similar temperature profile solution



The "constant-flux" approximation is accurate and gives a useful expression for pretty much every quantity of interest.



# The Marshak wave model yields several useful characteristic quantities, particularly $t_{\tau=1}$ , the formation time of a one-optical-thickness wave

• Optical thickness time scale: the time of formation of a  $\tau_R$  = 1 trapping layer is the key time scale

$$\mathbf{E}_{\tau=1} = \frac{3}{2(n+4)(1+q)\xi_0^2} \frac{C_0 \rho}{\sigma_{\rm SB} T_0^3 \kappa_0} = \frac{6}{(n+4)\xi_0^2} \frac{E_{\rm Th}}{E_{\rm R}} \frac{1}{\kappa_0 c} \qquad \mathbf{E}_{\rm R} = \frac{4\sigma_{\rm SB} T_0^4}{c} \qquad \mathbf{E}_{\rm th} = \frac{C_0 \rho T_0}{1+q}$$

• The trapped flux  $F_R$  and the trapped energy  $E_R$  vary on this time scale

$$F_{R} \approx \frac{cE_{R}}{3} (t_{\tau=1} / t)^{1/2} \qquad E_{R} \approx 2F_{R} t \approx \frac{2cE_{R}}{3} (t_{\tau=1} t)^{1/2}$$

• The wavefront, defined as  $\xi = \xi_0$ , decelerates

$$A^{2} = \frac{3(n+4)}{32(1+q)} \frac{\kappa_{0}C_{0}\rho}{\sigma_{SB}T_{0}^{3}} = \frac{3(n+4)}{8} \frac{\kappa_{0}}{c} \frac{E_{th}}{E_{R}} \qquad x_{0}(t) = \xi_{0} \frac{t^{1/2}}{A} = \xi_{0} \frac{2\sqrt{2}}{\sqrt{3(n+4)}} \sqrt{\frac{c}{\kappa_{0}}} \frac{E_{R}}{E_{th}} t^{1/2} = \frac{4}{(n+4)\kappa_{0}} \left(\frac{t}{t_{\tau=1}}\right)$$
$$\xi_{0}^{2} \approx \frac{5+n+q}{4+n}$$



1/2

UR IIF

#### **Pure-CH OMEGA-scale imploded shells do not trap radiation**



- High-yield shot 90288
- Radiation source r < 22 μm</li>
- Near-free escape of radiation through the DT shell

### A 6- $\mu$ m Cu inner pusher layer traps radiation through bang time as seen in a *LILAC* simulation where $T_R = T_e$ indicates optically thick LTE



 $T_{\rm R}$  =  $T_{\rm e}$  indicates LTE and a Planck spectrum, key assumptions underlying the Marshak wave model.



#### Marshak wave " $\tau$ = 1" formation times for Cu are short relative to the pusher hydro time, but far too long for a pure-CH shell



The " $\tau$  = 1" formation time is a parameter that anticipates the effectiveness of radiation trapping in an imploding pusher layer.



# Marshak waves have nearly identical wavefronts in planar, cylindrical, and spherical geometries, but very different $g(\xi) = T/T_0$ profiles



- In cylindrical and spherical geometry,  $T_0$  is not a good fuel/pusher boundary condition parameter; it is fixed at a definite point in  $\xi$ , but not in space or time
- A better boundary condition is the total radiated power at or near  $\xi = 0$



# Marshak waves have the same trajectory and flux trapping parameter in all three geometries, all expressed in terms of the optical thickness formation time $t_r$





### The Marshak wavefront has nearly identical trajectories and optical thicknesses in planar, cylindrical, and spherical geometries





# The Marshak wave\* is a self-similar solution to the Euler fluid energy equation including thermal radiation transport and adiabatic compression

Energy equation: 
$$\frac{1}{c}\frac{DE}{Dt} - \frac{P}{\rho^{2}}\frac{D\rho}{Dt} - \frac{\partial}{\partial m}\left(\frac{4}{3\kappa}\frac{\partial}{\partial m}(\sigma_{sB}T^{4})\right) = 0$$
Properties of matter\*\*:  $\kappa = \kappa_{0}\left(\rho/\rho_{0}\right)^{r}\left(T/T_{0}\right)^{-n} C_{v} = C_{0}\left(\rho/\rho_{0}\right)^{s}\left(T/T_{0}\right)^{q} P = (\gamma - 1)\rho E$ 
New compression
Uniform adiabatic compression:  $\rho(t) = \rho_{0}\left(t/t_{0}\right)^{\alpha}$ 
New parameters  $t_{0}$  and  $\alpha$ 
Marshak wave:  $T(m,t) = T_{0}g(m,t)h(t)$ 
 $h(t) = \left(\rho(t)/\rho_{0}\right)^{\gamma-t-s}$ 
 $\xi \frac{dg(\xi)^{q+1}}{d\xi} - \frac{d^{2}}{d\xi^{2}}g(\xi)^{n+4} = 0$ 
 $0 \le \xi \le \xi_{0}$ 
 $g(0) = 1$ 
 $g(\xi_{0}) = 0$ 
Self-similar space-time  $m,t$ 
 $\xi = (1+v)^{v_{2}}A\frac{m}{t^{v_{2}}}\left(\frac{t_{0}}{t}\right)^{v'^{2}}$ 
 $A^{2} = \frac{3(4+n)}{32(1+q)}\frac{\kappa_{0}C_{0}T_{0}}{\sigma_{sB}T_{0}^{4}}$ 
 $v = \alpha\left(\frac{(\gamma - 1)(3+n-q)}{(q+1)} - s-r\right)$ 
Wave front position  $m_{0}(t)$  at  $\xi = \xi_{0}$ :  $m_{0}(t) = \frac{\xi_{0}}{(1+v)^{v_{2}}}\frac{t^{v_{2}}}{A}\left(\frac{t}{t_{0}}\right)^{v'^{2}}$ 

The Marshak wave profile and trajectory are described approximately but completely.

\* R. E. Marshak, Phys. Fluids <u>1</u>, 24 (1958).
 \*\* A. P. Cohen *et al.*, Phys. Rev. Research <u>2</u>, 023007 (2020).



#### The Marshak wave model yields several useful characteristic quantities

• Optical thickness time scale: The time of formation of a  $\tau_R$  = 1 trapping layer is the key time scale

$$\mathbf{t}_{\tau=1} = \left[\frac{6(1+\nu)}{\xi_0^2(4+n)} \frac{E_{\text{th}}}{E_{\text{R}}} \frac{1}{c\kappa_0} \mathbf{t}_0^{\alpha\psi}\right]^{1/(1+\alpha\psi)} \qquad E_{\text{R}} = \frac{4\sigma_{\text{SB}}T_0^4}{c} \qquad E_{\text{th}} = \frac{C_0T_0}{1+q} \qquad \psi = \frac{(\gamma-1-s)(3-n-q)}{(1+q)} + r-s$$

• The trapped flux varies on this time scale more slowly:

$$F_{R}(t) \approx \frac{cE_{R}}{3} \left( t_{\tau=1}/t \right)^{1/2} \left( t/t_{0} \right)^{\frac{\alpha}{2} \left[ \frac{(\gamma-1)(5+n+q)}{(1+q)} - r - s\frac{(4+n)}{(1+q)} \right]} \left( t_{\tau=1}/t_{0} \right)^{\frac{\alpha}{2} \left[ \frac{(\gamma-1)(3-n-q)}{(1+q)} + r - s\frac{(4-n)}{(1+q)} \right]}$$

• Again, compression sets the time scale  $t_0$  and the power-law index  $\alpha$ 

$$\rho(t) = \rho_0 \left(\frac{t}{t_0}\right)^{\alpha} \qquad \nu = \alpha \left(\frac{(\gamma - 1)(3 + n - q)}{(1 + q)} - s - r\right)$$

• Optical thickness grows faster:

$$\tau(t) = (t/t_{\tau=1})^{\frac{1}{2} + \frac{\alpha}{2} \left[\frac{(\gamma - 1 - s)(3 - n - q)}{(1 + q)} + 2n\right]}$$



#### Radiation trapping by an ICF pusher layer can be characterized in terms of a Marshak wave model



- Radiation trapping is most apparent in simulations through a characteristic Marshak waveform, where radiation and electron temperatures are equal ( $T_R = T_e$ ), indicating the LTE atomic-radiative limit
- The Marshak wave model describes radiation trapping in pusher layers in terms of useful characteristic quantities
- The self-similar form and characteristic parameters of the Marshak wave model are obtained in cylindrical and spherical geometries
- The classic Marshak wave extends to a uniformly compressing pusher layer, preserving its self-similar analytic form with modified time scaling and modified parameter values

Volume-ignition capsule designs rely on radiation trapping.



# Rosseland mean opacity and specific heat for Cu is obtained from PrOpacEOS\* and fit with an expression suitable for the Marshak wave model



Fit:  $C_V = 1.33 \times 10^4 \times (T/eV)^{1/3} (J/g/eV)$ 

 $r \neq 0$  and  $s \neq 0$  anticipates time-varying  $\rho$ 

Fit:  $\kappa_R = 5.0 \times 10^7 \times (T/eV)^{-2} (cm^2/g)$ 

\* PrOpacEOS: Prism Computational Sciences, Inc.

