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A model[1] to study the transition of polystyrene (CH) from the 
solid to plasma state has been developed and implemented into 
the 1-D hydrocode LILAC 
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• With this model, the critical surface formation takes place after the target 
has been irradiated and the laser-imprint mechanism has occurred

• The model includes multiphoton-ionization, recombination, and impact-
ionization schemes that determine the free-electron density in the 
conduction band of the material

• By incorporating this model, the spatial profi les of the physical quantities 
such as pressure and mass density are observed to be different between 
the microphysics model and the original ad hoc mechanism in LILAC

A physics-based model to describe the initial plasma formation for plastic
targets has been developed and implemented into a 1-D hydrocode.

Summary

Currently, the hydrodynamic codes avoid the detailed
plasma-formation process
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At present, the hydrocodes assume an initial plasma state or use
the cold-start mechanism in an ad hoc mechanism and ignore the
detailed plasma-formation process.

Motivation
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Multiphoton-ionization, impact-ionization, 
and recombination processes determine the free
electron density in the valence band[1]
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Multiphoton ionization and impact ionization increase
the electron density, but recombination decreases it.

For CH:
Band-gap energy ~4.05 eV
UV light, m = 351 nm, E = 3.53 eV
Critical density: 9 × 1021 cm–3
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The dynamics is governed by a rate equation that is coupled to 
the laser-deposition and the temperature models
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• Until the critical surface formation, the dynamics is governed by the 
microphysics model

• Beyond that, the inverse bremsstrahlung absorption is incorporated 
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Flowchart of microphysics model
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 The critical surface formation takes place after the target has been irradiated and the laser-imprint mechanism has occurred
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The electron density inside the plastic rises because of laser energy deposition.

The electron temperature inside the target observed in the microphysics model is higher than the ad hoc model
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The temperature profi les in the ablation region between the two models are comparable.

Microphysics models predict decompression of the target ahead of the shock front because of shinethrough[2]
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The target is decompressed because of a rise in the electron temperature inside the target.
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Lower absorption in plastic is observed in the microphysics 
because of its transparency 
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• Implementation of the microphysics model into 2-D or 3-D hydrocodes will 
provide a better understanding of the laser-imprint mechanism through an 
accurate estimation of the laser-absorption profi les

• The results of the microphysics model will help us to understand the results 
of shock-merger experiments better

• Future experiments are being planned to study this phenomena in detail

A better understanding of the laser-imprint mechanism and shock-
timing experiments is possible with the microphysics model

Future Directions
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Currently, the hydrodynamic codes avoid the detailed 
plasma-formation process
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At present, the hydrocodes assume an initial plasma state or use 
the cold-start mechanism in an ad hoc mechanism and ignore the 
detailed plasma-formation process.
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A model[1] to study the transition of polystyrene (CH) from the 
solid to plasma state has been developed and implemented into 
the 1-D hydrocode LILAC 
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•	 With this model, the critical surface formation takes place after the target 
has been irradiated and the laser-imprint mechanism has occurred

•	 The model includes multiphoton-ionization, recombination, and impact-
ionization schemes that determine the free-electron density in the 
conduction band of the material

•	 By incorporating this model, the spatial profiles of the physical quantities 
such as pressure and mass density are observed to be different between  
the microphysics model and the original ad hoc mechanism in LILAC

A physics-based model to describe the initial plasma formation for plastic 
targets has been developed and implemented into a 1-D hydrocode.

Summary



Multiphoton-ionization, impact-ionization,  
and recombination processes determine the free 
electron density in the valence band[1]
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Multiphoton ionization and impact ionization increase 
the electron density, but recombination decreases it.

For CH:
Band-gap energy ~4.05 eV
UV light, m = 351 nm, E = 3.53 eV
Critical density: 9 × 1021 cm–3
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The dynamics is governed by a rate equation that is coupled to 
the laser-deposition and the temperature models

TC14876

•	 Until the critical surface formation, the dynamics is governed by the 
microphysics model

•	 Beyond that, the inverse bremsstrahlung absorption is incorporated 
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Flowchart of microphysics model
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 The critical surface formation takes place after the target has been irradiated and the laser-imprint mechanism has occurred
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The electron density inside the plastic rises because of laser energy deposition.



The electron temperature inside the target observed in the microphysics model is higher than the ad hoc model
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The temperature profiles in the ablation region between the two models are comparable.



Microphysics models predict decompression of the target ahead of the shock front because of shinethrough[2]
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The target is decompressed because of a rise in the electron temperature inside the target.
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•	 Implementation of the microphysics model into 2-D or 3-D hydrocodes will 
provide a better understanding of the laser-imprint mechanism through an 
accurate estimation of the laser-absorption profiles

•	 The results of the microphysics model will help us to understand the results 
of shock-merger experiments better

•	 Future experiments are being planned to study this phenomena in detail

A better understanding of the laser-imprint mechanism and shock-
timing experiments is possible with the microphysics model

Future Directions
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