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Summary

A flying focus triggers an ionization front
that upshifts an ultrafast pulse from the optical
to the extreme ultraviolet (XUV)

- The theory of photon acceleration predicts impressive frequency
upshifts but experiments are ultimately limited by two effects
+ Use of the flying focus effectively eliminates both of these effects

- For short pulses (<100 fs), simulations of photon acceleration
in a flying focus demonstrate upshifts from the optical to the XUV

+ The energy efficiency of this process compares favorably
with prior experiments

« This scheme can be scaled to produce a novel tabletop source
of x rays
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Motivations and Background

Photon acceleration offers a method
of tunable XUV production

XUV (A < 120 nm) sources provide
+ High-resolution imaging for HED physics and nanotechnology

- Fine-scale material ablation for nanomachining, spectrometry,
and photolithography

- Ultrafast pump/probe techniques for fundamental atomic physics
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Time refraction, the temporal analogue to spatial
refraction, is the underlying phenomenon that
permits photon acceleration

Dispersion relation for a photon: w = ck/n
- A spatially varying index will cause a shift in k

+ A temporally varying index will cause a shift in @

Space refraction Time refraction

In a plasma: n=/1—a)|%/a)2

° ‘Z):z

5= e?n, / €o M, < free-electron density, increased via ionization

Photons propagating within the ionization front
of a plasma will undergo a frequency upshift.
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Proposed Scheme

A prototypical scheme for photon acceleration: a withess
pulse co-propagating with a laser-driven ionization front (IF)

Linear approximation
1 >
V4

If vif <c, then accelerated photons
outpace the ionization front.
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Simulation and Modeling
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Medium: H, gas jet

Parameter Value
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ng 1.75 x 1021 cm—3
U, 13.6 eV
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The dispersion relation w = (w3 + ¢? k?)2

provides equations of motion for:

I. Spatial refraction, % =-Vw

dr oJw

dt = ok
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TR T YT had B dz ~ 2ck, of P

I1. Group velocity,

III. Time refraction

A simple analytic model reveals multiple
paths to shorter wavelengths:

Aw scales with

W2 -
po - the length of the

focal region (1 2)

* the density of
medium (1 @3)

* the intensity of the
drive pulse (1 w2, | L)
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The flying focus, a focal spot that moves in time, can produce an ionization
front traveling at c that counter-propagates with respect to the drive pulse

Drive pulse

V4

When v = ¢, then photons upshift
to significantly higher frequencies.

Simulation Results

\ Linear approximation
- >

A chirped pulse sent through a chromatic
lens creates a moving or “flying” focus

A negative chirp can
create a focus that
counter-propagates
with respect to
the drive pulse at ¢

( 1. Ensures accelerated
photons cannot outrun
the ionization front

2. Mitigates ionization

* If the drive pulse has refraction of the drive
sufficient intensity, 4 pulse

the flying focus will
create an ionization
front traveling at ¢

By eliminating these two
effects, the interaction
distance is extended
long past the Rayleigh

\_ range of the drive pulse

A flying focus photon accelerator overcomes prior limitations to upshift
an ultrafast optical pulse to the XUV over 1 cm of propagation
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Summary

A flying focus triggers an ionization front

that upshifts an ultrafast pulse from the optical
to the extreme ultraviolet (XUV)

- The theory of photon acceleration predicts impressive frequency
upshifts but experiments are ultimately limited by two effects

- Use of the flying focus effectively eliminates both of these effects

- For short pulses (<100 fs), simulations of photon acceleration
in a flying focus demonstrate upshifts from the optical to the XUV

- The energy efficiency of this process compares favorably
with prior experiments

- This scheme can be scaled to produce a novel tabletop source
of x rays
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Motivations and Background

Photon acceleration offers a method

of tunable XUV production

XUV (A < 120 nm) sources provide
- High-resolution imaging for HED physics and nanotechnology

- Fine-scale material ablation for nanomachining, spectrometry,
and photolithography

- Ultrafast pump/probe techniques for fundamental atomic physics
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Time refraction, the temporal analogue to spatial

refraction, is the underlying phenomenon that
permits photon acceleration

Dispersion relation for a photon: @w = ck/n
- A spatially varying index will cause a shift in k

- A temporally varying index will cause a shift in @
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In a plasma: n=/1—a)|%/a)2

° (1)2

5= e2n, / €, M, < free-electron density, increased via ionization

Photons propagating within the ionization front

of a plasma will undergo a frequency upshift.
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Proposed Scheme

A prototypical scheme for photon acceleration: a withess
pulse co-propagating with a laser-driven ionization front (IF)

Linear approximation
- >
V4

If vjr < c, then accelerated photons

outpace the ionization front.
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The flying focus, a focal spot that moves in time, can produce an ionization

front traveling at c that counter-propagates with respect to the drive pulse

Drive pulse

\\ Linear approximation
V4

When v = ¢, then photons upshift

to significantly higher frequencies.

A chirped pulse sent through a chromatic
lens creates a moving or “flying” focus

A negative chirp can
create a focus that
counter-propagates
with respect to
the drive pulse at ¢

- If the drive pulse has
sufficient intensity,
the flying focus will
create an ionization
front traveling at ¢

{

( 1. Ensures accelerated
photons cannot outrun
the ionization front

2. Mitigates ionization
refraction of the drive
pulse

By eliminating these two
effects, the interaction
distance is extended

long past the Rayleigh
K range of the drive pulse
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Drive-pulse propagation equation (£ = ct - 2):
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1 Parameter Value

The dispersion relation @ = (w32 +
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provides equations of motion for: Species Hy
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I. Spatial refraction, dt = —Vw U, 13.6 eV
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II. Group velocity, df = 9k
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A simple analytic model reveals multiple
paths to shorter wavelengths:
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- the length of the
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* the intensity of the
drive pulse (1 @2 505 VL)
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Simulation Results

A flying focus photon accelerator overcomes prior limitations to upshift
an ultrafast optical pulse to the XUV over 1 cm of propagation
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Energy efficiency:

Eqg= 56J

(8w)in =170 mJ
(Ew)out = 43 mdJ
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