Photon Acceleration in a Flying Focus

A. J. HOWARD, D. TURNBULL, A. S. DAVIES, P. FRANKE, D. H. FROULA, and J. P. PALASTRO

Summary

A flying focus triggers an ionization front that upshifts an ultrafast pulse from the optical to the extreme ultraviolet (XUV)

- The theory of photon acceleration predicts impressive frequency upshifts but experiments are ultimately limited by two effects
- Use of the flying focus effectively eliminates both of these effects
- For short pulses (<100 fs), simulations of photon acceleration in a flying focus demonstrate upshifts from the optical to the XUV
- The energy efficiency of this process compares favorably with prior experiments
- This scheme can be scaled to produce a novel tabletop source of x rays

Motivations and Background

Photon acceleration offers a method of tunable XUV production

XUV (λ < 120 nm) sources provide

- High-resolution imaging for HED physics and nanotechnology
- Fine-scale material ablation for nanomachining, spectrometry, and photolithography

Ultrafast pump/probe techniques for fundamental atomic physics

Time refraction, the temporal analogue to spatial refraction, is the underlying phenomenon that permits photon acceleration

Dispersion relation for a photon: $\omega = ck/n$

- A spatially varying index will cause a shift in k
- A temporally varying index will cause a shift in ω

Space $(z) \longrightarrow$

Time refraction

In a plasma: $n = \sqrt{1 - \omega_p^2 / \omega^2}$

• $\omega_{\rm p}^2 = e^2 n_{\rm e} / \varepsilon_0 m_{\rm e} \propto$ free-electron density, increased via ionization

Photons propagating within the ionization front of a plasma will undergo a frequency upshift.

University of Rochester, Laboratory for Laser Energetics

Proposed Scheme

Simulation and Modeling

Drive-pulse propagation equation $(\xi = ct - z)$: $\left| 2 \left(i k_0 - \frac{\partial}{\partial \xi} \right) \frac{\partial}{\partial z} + \nabla_{\perp}^2 \right| E_{\perp} = \frac{\omega_p^2}{c^2} E_{\perp} - \eta E_{\perp}$ **Spatiotemporal Diffraction Plasma**

Ionization and inverse bremsstrahlung energy losses

Electron density profile:

$$c\frac{\partial}{\partial\xi}n_{\rm e} = v_{\rm FI}n_{\rm g} + \alpha_{\rm CI}n_{\rm e}n_{\rm g} - \alpha_{\rm R}n_{\rm e}^2 - \beta_{\rm 3B}n_{\rm e}^3$$

refraction

Field ionization

modifications

Collisional Radiative ionization

3-body recombination recombination

The dispersion relation $\boldsymbol{\omega} = (\boldsymbol{\omega}_{n}^{2} + \boldsymbol{c}^{2} \boldsymbol{k}^{2})^{\frac{1}{2}}$ provides equations of motion for:

I. Spatial refraction, $\frac{dk}{dt} = -\nabla \omega$

II. Group velocity, $\frac{dr}{dt} = \frac{\partial \omega}{\partial k}$

III. Time refraction, $\frac{d\omega}{dt} = \frac{1}{2\omega} \frac{\partial}{\partial t} \omega_p^2$

 $\frac{\mathrm{d}\omega}{\mathrm{d}z} = \frac{1}{2ck_z} \frac{\partial}{\partial\xi} \omega_p^2$

A simple analytic model reveals multiple paths to shorter wavelengths:

 $\Delta \omega$ scales with

• the length of the focal region († z)

Laser: 2*w* Ti:sapphire

Parameter

 λ_{c}

Δλ

T₀

E

I (**t**)

I (**r**)

f/#

Parameter

Species

na

 U_I

Medium: H₂ gas jet

Value

400 nm

6.0 nm

87 fs

54 ps

5.6 J

SG-8

SG-10

1.02 m

14

Value

 H_2

 $1.75 \times 10^{21} \text{ cm}^{-3}$

13.6 eV

- the density of medium ($\uparrow \omega_{p0}^2$)
- the intensity of the drive pulse $(\uparrow \omega_{p0}^2, \downarrow L)$

A *flying focus* photon accelerator overcomes prior limitations to upshift

(×10²⁰

Simulation Results

Summary

A *flying focus* triggers an ionization front that upshifts an ultrafast pulse from the optical to the extreme ultraviolet (XUV)

- The theory of photon acceleration predicts impressive frequency
 upshifts but experiments are ultimately limited by two effects
- Use of the flying focus effectively eliminates both of these effects
- For short pulses (<100 fs), simulations of photon acceleration in a flying focus demonstrate upshifts from the optical to the XUV
- The energy efficiency of this process compares favorably with prior experiments
- This scheme can be scaled to produce a novel tabletop source of x rays

Motivations and Background

Photon acceleration offers a method of tunable XUV production

XUV (λ < 120 nm) sources provide

- High-resolution imaging for HED physics and nanotechnology
- Fine-scale material ablation for nanomachining, spectrometry, and photolithography
- Ultrafast pump/probe techniques for fundamental atomic physics

Time refraction, the temporal analogue to spatial refraction, is the underlying phenomenon that permits photon acceleration

Dispersion relation for a photon: $\omega = ck/n$

- A spatially varying index will cause a shift in k
- A temporally varying index will cause a shift in ω

Time refraction

In a plasma: $n = \sqrt{1 - \omega_p^2 / \omega^2}$

• $\omega_p^2 = e^2 n_e / \varepsilon_0 m_e \propto$ free-electron density, increased via ionization

Photons propagating within the ionization front of a plasma will undergo a frequency upshift.

Proposed Scheme

A prototypical scheme for photon acceleration: a witness pulse co-propagating with a laser-driven ionization front (IF)

rightarrow Space (z) \rightarrow Time

If $v_{\rm IF}$ < c, then accelerated photons outpace the ionization front.

The *flying focus*, a focal spot that moves in time, can produce an ionization front traveling at *c* that *counter*-propagates with respect to the drive pulse

When $v_{IF} = c$, then photons upshift to significantly higher frequencies.

A chirped pulse sent through a chromatic lens creates a moving or "flying" focus

- A negative chirp can create a focus that counter-propagates with respect to the drive pulse at *c*
- If the drive pulse has sufficient intensity, the flying focus will create an ionization front traveling at *c*
- 1. Ensures accelerated photons cannot outrun the ionization front
- 2. Mitigates ionization refraction of the drive pulse
- By eliminating these two effects, the interaction distance is extended long past the Rayleigh range of the drive pulse

Simulation and Modeling

Drive-pulse propagation equation ($\xi = ct - z$):		Pa
$\left[2\left(ik_{0}-\frac{\partial}{\partial E}\right)\frac{\partial}{\partial T}+\nabla^{2}\right]E_{\perp}=\frac{\omega_{p}^{2}}{2}E_{\perp}-\eta E_{\perp}$		
$\begin{bmatrix} \begin{pmatrix} 0 & \partial \xi \end{pmatrix} \partial z & - \end{bmatrix} = \begin{bmatrix} C^2 & - & - \\ A & A \end{bmatrix}$		
Spatiotemporal Diffraction Plasma Ionization		
modifications refraction and inverse bremsstrahlung		
energy losses		
Electron density profile:		
a^{∂} $p - u - p + \alpha - p - \alpha - p^2 - \beta - p^3$		
$\frac{c_{\partial\xi}}{\partial\xi} = \frac{v_{FI}n_g + \alpha_{CI}n_e n_g - \alpha_R n_e - \rho_{3B}n_e}{\sqrt{2}}$		
Field Collisional Radiative 3-body		
ionization ionization recombination recombination	l	N
The dispersion valation $(x)^2 + x^2 \frac{1}{2}$	Para	am
provides equations of motion for:	Spe	ec
L Spatial refraction $dk = \nabla c$	ł	n _ç
1. Spatial refraction, $\frac{dt}{dt} = -\sqrt{\omega}$		U
II. Group velocity, $\frac{dr}{dt} = \frac{\partial \omega}{\partial k}$		
III. Time refraction, $\frac{d\omega}{dt} = \frac{1}{2\omega} \frac{\partial}{\partial t} \omega_p^2$ $\frac{d\omega}{dz} = \frac{1}{2ck_z}$	$\frac{\partial}{\partial \xi}\omega$	2 p

Laser: 2*w* Ti:sapphire

Parameter	Value
λ_{c}	400 nm
$\Delta \lambda$	6.0 nm
<i>Τ</i> 0	87 fs
Т	54 ps
ε	5.6 J
I (t)	SG-8
I (r)	SG-10
f	1.02 m
f /#	14

Medium: H₂ gas jet

Parameter	Value
Species	H ₂
ng	$1.75\times10^{21}~cm^{-3}$
U_I	13.6 eV

A simple analytic model reveals multiple paths to shorter wavelengths:

 $\Delta \omega$ scales with

- the length of the focal region († z)
- the density of medium (↑ ω²_{p0})

 $\frac{\Delta\omega}{\omega_0} = \sqrt{\left(\frac{\omega_{p0}^2}{\omega_0^2}\right)\frac{z}{L}}$

the intensity of the drive pulse (↑ 𝒪²_{p0}, ↓ L)

Simulation Results

A *flying focus* photon accelerator overcomes prior limitations to upshift an ultrafast optical pulse to the XUV over 1 cm of propagation

TC14719