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Hot-electron preheat can degrade fuel compression in DD ignition designs

•	 Fuel compression is negatively affected if more than ~0.15% of the laser energy 
is coupled into the fuel in the form of hot electrons*

•	 Hot-electron coupling to implosion depends on the electron divergence
–– if electron divergence is large (like on OMEGA**), only ~25% of the 
electrons will intersect the cold fuel and result in preheat

–– hot-electron divergence or coupling to implosion needs to be measured  
on the NIF 

•	 Electrons with energy below ~50 keV will be stopped in the ablator and will not 
preheat the compressed fuel
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Motivation

	 * J. A. Delettrez, T. J. B. Collins, and C. Ye, Bull. Am. Phys. Soc. 59, BAPS.2014.DPP.JO4.3 (2014). 
**	B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

If the divergence is large, preheat mitigation is needed if more than ~0.7% of the 
laser energy is converted to hot electrons with temperature Thot ~ 50 keV.
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Planar NIF experiments explore LPI instabilities and hot-electron production  
in DD ignition-relevant plasma conditions
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Coronal conditions predicted by DRACO 
radiation–hydrodynamic simulations

•	 Incident laser intensity is ~2× intensity at nc/4 at ignition-relevant Ln and Te

*	V. N. Goncharov et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.TO5.3 (2016).

Parameters at
nc/4 surface Ignition NIF DD* Planar NIF

IL (W/cm2) 6 to 8 # 1014 5 to 15 # 1014

Ln (nm) 600 500 to 700

Te (keV) 3.5 to 5 3 to 5
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Hot-electron properties were inferred using the measured hard x-ray spectra
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•	 Time-integrated hard x-ray spectra obtained using FFLEX*

*	M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014).
FFLEX: filter-fluorescer x-ray diagnostic
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Hot-electron conversion efficiency and temperature at DD ignition-relevant 
coronal conditions were inferred

Hot-electron conversion efficiency and temperature versus 
laser intensity at nc/4
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Hot-electron conversion efficiency and temperature at DD ignition-relevant 
coronal conditions were inferred

Hot-electron conversion efficiency and temperature versus 
laser intensity at nc/4
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Measurements of hot-electron angular divergence or coupling to implosion  
on the NIF are needed

•	 Measurements of hot-electron divergence on OMEGA* are not applicable to NIF experiments 
because LPI physics on the NIF and OMEGA are different:

–– SRS dominates the scattered light spectrum on the NIF, while TPD dominates on OMEGA
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			 M. J. Rosenberg et al.,  Phys. Rev. Lett. 120, 055001 (2018).
 *		B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
**	W. Seka et al., Phys. Plasmas 16, 052701 (2009).
		 SRS: stimulated Raman scattering
		 TPD: two-plasmon decay

NIF:	 Ln = 525 nm
		  Te = 4.5 keV

OMEGA:**	 Ln = 150 nm
			   Te = 2.8 keV
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An OMEGA platform––to be adapted to the NIF––has been developed to 
diagnose hot-electron coupling to the unablated shell in implosions

OMEGA hot-electron coupling experiment ported to the NIF
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The difference in hard x-ray (HXR) signals between mass-equivalent CH and  
multilayered implosions " hot-electron energy deposited in the inner shell layer.

A. R. Christopherson et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO5.7 (2016).
NIF experiments will be  
scaled up; use Ge dopant
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NIF experiments will study hot-electron coupling to an unablated shell

•	 Mass-equivalent targets consist of CH and Ge-doped layers of various thicknesses, plus  
a baseline pure-CH case

•	 Hydro simulations predict that ~40 nm of CH is ablated

•	 The thicknesses of the outer-CH and Ge-doped payloads are varied to measure where the hot 
electrons deposit their energy

•	 If hydro instability is an issue, a thicker outer CH layer prevents Ge from getting into the corona
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Targets for NIF experiments in September 2018
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The experiments will use thicker shells and higher-adiabat implosions than  
in the standard polar-direct-drive (PDD) design* to reduce possible  
hydro instabilities

TC14310

•	 LILAC simulations predict the adiabat in the compressed shell of 3.6 and the adiabat at the ablation surface of ~10

•	 Pressure and temperature gradients are collinear at the CH/CH (4% Ge) interface " no Rayleigh–Taylor  
instability growth (a weaker Richtmyer–Meshkov growth is possible)
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	*	M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).
**	P. B. Radha et al., Phys. Plasmas 23, 056305 (2016).

Imprint simulation in the
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LILAC simulations predict coronal conditions 
for the mass-equivalent implosions

•	 Simulation for a target with a Ge-doped layer 
(coronal conditions are similar for mass-equivalent all-CH implosions)
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The SRS and TPD absolute-instability thresholds* are exceeded in this experimental design.

	*	C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974);  
		 A. Simon et al., Phys. Fluids 26, 3107 (1983).
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The energy deposited into a payload can be inferred by subtracting the all-CH 
HXR from the HXR of a Ge-doped layered target  

•	 “Radiative power” E
E

lost

rad  is proportional to 
Z
Z

2
 

•	 E E( % )CH Ge
payload

CH4 .  are energies deposited by hot electrons into the CH (4% Ge) payload 
and CH replacing the payload in an all-CH target
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The preheat formula is compared to the results of 1-D LILAC hydro simulations  
with hot electrons 

•	 The fraction of laser energy into superthermals and the source divergence 
angle will be constrained by the two measured HXR signals
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Hot-electron energy coupled to an implosion constrains  
usable laser intensities in direct-drive ignition designs.

Predicted NIF hard x-ray data

CH
CH (4% Ge)

D2 gas

1054.2 nm

60.8 nm

45 nm CH

D2 gas

1040 nm

120 nm

0 2 4 6 8

Time (ns)

Ge-doped target,
60-nm outer 
CH ablator

Ge-doped target, 
40-nm outer 
CH ablator

0

2

4

6

H
X

R
 a

b
ov

e 
50

 k
eV

(#
10

8  
ar

b
it

ra
ry

 u
n

it
s)

LILAC simulations for Thot = 55 keV, hot-electron
divergence full angle of 2r, Ge-doped target at 3.9%

CH target



TC14308

LPI hot-electron production and preheat at direct-drive ignition-relevant 
plasma conditions were investigated
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Summary/Conclusions 

•	 National Ignition Facility (NIF) planar-target experiments achieve 
direct-drive (DD) ignition-relevant scale lengths (Ln ~ 400 to 700 nm) 
and electron temperatures (Te ~ 4 to 5 keV) 

•	 Planar experiments suggest that hot-electron preheat is tolerable  
in DD ignition designs with CH ablators if . /W cmI 4 5 10</n 4

14 2
c

#   
( /W cmI 107</n 4

14 2
c

#  with Si ablators)

•	 Spherical multilayer target experiments will infer hot-electron  
coupling to the imploding shell


