Picosecond Thermal Dynamics in an Underdense Plasma Measured with Thomson Scattering

A. DAVIES,¹ S. BUCHT,¹ J. KATZ,¹ D. HABERBERGER,¹ J. L. SHAW,¹ D. TURNBULL,¹ I. A. BEGISHEV,¹ S.-W. BAHK,¹ J. BROMAGE,¹ J. D. ZUEGEL,¹ J. D. SADLER,² P. A. NORREYS,² R. TRINES,³ R. BINGHAM,⁴ and D. H. FROULA¹ ¹University of Rochester, Laboratory for Laser Energetics

Research sponsored by the Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-NA0001944 and the Office of Fusion Energy Sciences and Contract Number DE-SC00116253

²University of Oxford, Clarendon Laboratory; ³Central Laser Facility Rutherford Appleton Laboratory, ⁴University of Strathclyde

LLE

E26210

Summary

Time-resolved Thomson scattering was used to characterize the temperature and density of a low-density plasma on a picosecond time scale

- A pulse-front tilt compensated streaked spectrometer was utilized for the first time to measure underdense plasma thermal dynamics
- The electron heating rate and plateau temperature are found to increase with higher densities
- The electron temperature was observed to rise from an initial 5 eV to a plateau temperature in 23 ps

Motivation

Underdense plasmas have many promising applications within the laser–plasma interaction field: nuclear fusion, particle accelerators, x-ray sources, and laser-plasma amplification

Having complete knowledge of the plasma dynamics is essential to establishing optimal parameters for a given application.

- ** SRS = stimulated Raman scattering
- [†]FFOM = filamentation figure of merit

^{*}SBS = stimulated Brillouin scattering

At high amplitudes, the electron plasma wave can break if the particle velocity carrying the wave approaches the wave's phase velocity

D. S. Clark and N. J. Fisch, Phys. Plasmas <u>10</u>, 3363 (2003);

T. P. Coffey, Phys. Fluids <u>14</u>, 1402 (1971).

A parameter scan over pump intensities and densities has been run in particle-in-cell (PIC) simulations to study thermal effects

1-D, constant pump, constant density, seed meets nonlinear regime

Wave breaking changes the parameter regime for optimal efficiency in a Raman amplifier.

An underdense plasma experimental system has been constructed to make precise measurements of plasma temperature, nonlinear/driven plasma waves, and laser propagation

A H₂ gas cell was used to create a 4-mm-long homogenous plasma and characterized using interferometry and Thomson scattering

Interferometry indicates a neutral gas uniformity of less than 4% rms.

A novel high-throughput (f/5), ultrafast picosecond Thomson-scattering system* was required to measure the evolution of the plasma conditions

*J. Katz et al., Rev. Sci. Instrum. <u>87</u>, 11E535 (2016).

The electron temperature and density can be determined by scattering from thermal electron plasma waves

The Thomson-scattering data were fit late in time to find both the election temperature and density

UR LLE

Keeping the electron density constant, the Thomson spectra were fit for all earlier times by changing the plasma temperature

The heating rates and temperature plateaus were measured as a function of density for a 2×10^{14} W/cm² pump laser

Temperature versus time Temperature plateau versus density 150 150 3.3 × 10¹⁸ .4 × 10¹⁸ 1.05×10^{19} 2.29×10^{19} 100 100 -O- 2.35 × 10¹⁹ T_e (eV) T_e (eV) Ŧ 50 50 Ŧ ₽ 0 0 10 30 40 20 0 2 3 0 1 **Density** (×10¹⁹ cm⁻³) Time (ps)

The electron heating rate and plateau temperature are found to increase with higher densities.

The inverse-bremsstrahlung heating pattern held during the density scan for four out of the five shots

an initial 5 eV to a density-dependent plateau in 23 ps.