A 3-D wave-based model of CBET* has been
successfully developed in LPSE

e This model solves the time-enveloped Maxwell equations in 3-D coupled
to a fluid equation for the low-frequency ion-acoustic response

— radiative boundary conditions, arbitrary incident beams

e A solid understanding of CBET has been obtained on OMEGA
— coordinated program of theory, numerical simulations, and experiments

 CBET mitigation is a crucial part of LLE’s 100-Gbar plan

TC12767 *cross-beam energy transfer

Laser-beam propagation and energy deposition

is computed in ICF* design codes using ray tracing
UR

* Absent nonlinearity, the geometric-optics approximation
is well justified based on the long plasma scale lengths

* Power is deposited based on collisional absorption of laser light
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Wave-based models face several challenges
and complications, but these can be overcome

 We are computing the motion of a semi-classical object
by solving the (vector) Schrodinger equation
» Several key technical challenges were solved

— time-enveloped (vector) wave equation in 3-D
in strongly inhomogeneous plasma of a useful size

efficient algorithm is required (i.e., not Crank—Nicholson)
very complicated boundary conditions (in 3-D)
coupled to a plasma model
parallel efficiency [scalable solver for O(109)
computational cells]
* The resulting wave solver is practical to run in 3-D
— 100 Intel cores, could scale to 1000’s

— pioneering use/visualization of large datasets/fast disks
at LLE [O(100 GB) sets]
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The boundary conditions use a “total-field/scattered-
field” formulation together with a perfectly matched
absorbing layer (PML)

uUR

LLE

* [nject a pump wave on the left-hand side and a (weak) seed wave on the right-hand side
e Match the stimulated Brillouin scattering (SBS) resonance condition for the seed

by changing its frequency and/or adding a flow velocity to the plasma
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The LPSE electromagnetic (EM) wave solver
reproduces analytical results for propagation

in an inhomogeneous plasma
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D. E. Merewether, R. Fisher, and F. W. Smith, IEEE Trans. Nucl. Sci. 27, 1829 (1980).
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Obliquely incident light turns at a lower density
(shifted by cos20 in a linearly varying density profile)
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LLE

1/6 27 \1/3
_°> A; () n (a::ozL> (x—L+Lsin?0)

This results in a strong cos®0
angular dependence for absorption Comparison with Airy pattern

— LPSE
— Analytic

— LPSE Ne

0.98 [~ | --- Analytic

0.96

0.94

Fraction reflected

|EgZl/|Eo| (arbitrary units)

0.92

0.90

Angle of incidence (°)

TC12772

The laser light is partially coherent; the intensity

is not the sum of the intensity of individual beams
UR

LLE

This effect can have a dramatic impact on laser

absorption and the drive of an ICF target
UR
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e Collisional absorption is included
in the ray trace by summing the
contributions from each ray
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The electric-field grating resonantly excites ion-acoustic

waves because of the plasma-flow Doppler shift
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If the two EM waves have
equal frequencies, the
ion-acoustic perturbation
will be large if ke v = c4
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This becomes an induced SBS process;

laser energy changes direction
UR
LLE

Laser energy can be
redirected before it has
reached its turning point
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* [t appears to operate in the regime of a convective amplifier for direct-
drive ICF, which may be a tractable problem to describe with rays
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All direct-drive CBET calculations have been performed
using a 1-D description* that has been adapted
to geometric ray tracing

Unlike x-ray drive,

the presence of supersonic
plasma flow enables

the process to be resonant*

Three-wave SBS equations
are computed (pairwise)
for each beam crossing
using a generalization

of Randall et al.* and are
implemented in-line in

1-D LILAC

' | | |
Because the EM seed amplitude —-600 400 -200
is large, small gains affect um
the absorbed energy.

*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981);
K. B. Wharton et al., Phys. Rev. Lett. 81, 2248 (1998);
B. I. Cohen et al., Phys. Plasmas 5, 3408 (1998);
E17994e H. A. Rose and S. Ghosal, Phys. Plasmas 5, 1461 (1998).

A nonlinear CBET model is required to obtain
agreement between 1-D predictions and OMEGA
experimental data

e The CBET model used to obtain agreement with o > 3.5
data (not compromised by mix) is ray-based

— scattered-light power and spectrum, shell trajectories,
and mass ablation rates

Implosion trajectory Scattered light
| | | | | | | | |
1-D simulations

[ Laser pulse

Measured | -
scattered power

|

No CBET

Radius (um)
N
o
o
Scattered power (TW)

100
20 22 24 26 28 3.0 10 15 2.0 25

Time (ns) Time (ns)

E21315k

A wave-based CBET model is required for several
important reasons

There are uncertainties associated with ray-based CBET models that are
hard to quantify without comparison with a more-fundamental model

The model’s correctness is empirically determined; however, experimental
tests of CBET are integrated experiments (indirect)

Caustic surfaces/turning
points (field swelling,
Airy-like patterns)

Beam speckle (spatial
and temporal incoherence)

Polarization effects

The IAW response is
approximate in ray-based
CBET (steady state,
strong damping)
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Spatial incoherence can be modeled with no difficulty;

temporal incoherence is only slightly harder
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At high enough laser intensities, CBET may not act
as a simple spatial amplifier

* Shock-ignition experiments exceed filamentation thresholds
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A 3-D wave-based model of CBET* has been

successfully developed in LPSE

UR
LLE

* This model solves the time-enveloped Maxwell equations in 3-D coupled
to a fluid equation for the low-frequency ion-acoustic response

— radiative boundary conditions, arbitrary incident beams

e A solid understanding of CBET has been obtained on OMEGA
— coordinated program of theory, numerical simulations, and experiments

 CBET mitigation is a crucial part of LLE’s 100-Gbar plan

TC12767 *cross-beam energy transfer



Laser-beam propagation and energy deposition

is computed in ICF* design codes using ray tracing
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e Absent nonlinearity, the geometric-optics approximation
is well justified based on the long plasma scale lengths

e Power is deposited based on collisional absorption of laser light
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Wave-based models face several challenges

and complications, but these can be overcome
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 We are computing the motion of a semi-classical object
by solving the (vector) Schrodinger equation
o Several key technical challenges were solved

— time-enveloped (vector) wave equation in 3-D
in strongly inhomogeneous plasma of a useful size

— efficient algorithm is required (i.e., not Crank—Nicholson)
— very complicated boundary conditions (in 3-D)
— coupled to a plasma model
— parallel efficiency [scalable solver for O(109)
computational cells]
* The resulting wave solver is practical to run in 3-D
— 100 Intel cores, could scale to 1000’s

— pioneering use/visualization of large datasets/fast disks
at LLE [O(100 GB) sets]
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The boundary conditions use a “total-field/scattered-
field” formulation together with a perfectly matched
absorbing layer (PML)
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* Inject a pump wave on the left-hand side and a (weak) seed wave on the right-hand side
e Match the stimulated Brillouin scattering (SBS) resonance condition for the seed
by changing its frequency and/or adding a flow velocity to the plasma
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The LPSE electromagnetic (EM) wave solver
reproduces analytical results for propagation

In an inhomogeneous plasma
UR
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S-polarized at normal incidence Comparison with Airy pattern
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Obliquely incident light turns at a lower density
(shifted by cos20 in a linearly varying density profile)
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The laser light is partially coherent; the intensity

iIs not the sum of the intensity of individual beams
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The electric-field grating resonantly excites ion-acoustic

waves because of the plasma-flow Doppler shift
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This becomes an induced SBS process;
laser energy changes direction
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This effect can have a dramatic impact on laser

absorption and the drive of an ICF target

UR
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[t appears to operate in the regime of a convective amplifier for direct-
drive ICF, which may be a tractable problem to describe with rays
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All direct-drive CBET calculations have been performed
using a 1-D description* that has been adapted

to geometric ray tracing
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e Unlike x-ray drive, 800
the presence of supersonic
plasma flow enables
the process to be resonant* 600 g

 Three-wave SBS equations
are computed (pairwise) € 400
for each beam crossing
using a generalization

of Randall et al.* and are 200
implemented in-line in
1-D LILAC
0
Because the EM seed amplitude -800 -600 400 -—200 0
is large, small gains affect um
the absorbed energy.

*C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981);
K. B. Wharton et al., Phys. Rev. Lett. 81, 2248 (1998);
B. I. Cohen et al., Phys. Plasmas 5, 3408 (1998);
E17994e H. A. Rose and S. Ghosal, Phys. Plasmas 5, 1461 (1998).



A nonlinear CBET model is required to obtain
agreement between 1-D predictions and OMEGA

experimental data
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e The CBET model used to obtain agreement with o > 3.5
data (not compromised by mix) is ray-based

— scattered-light power and spectrum, shell trajectories,
and mass ablation rates
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A wave-based CBET model is required for several

important reasons
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 There are uncertainties associated with ray-based CBET models that are
hard to quantify without comparison with a more-fundamental model

* The model’s correctness is empirically determined; however, experimental
tests of CBET are integrated experiments (indirect)

e Caustic surfaces/turning
points (field swelling,
Airy-like patterns)

e Beam speckle (spatial
and temporal incoherence)

e Polarization effects

e The IAW response is
approximate in ray-based
CBET (steady state,
strong damping)
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Spatial incoherence can be modeled with no difficulty;

temporal incoherence is only slightly harder
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At high enough laser intensities, CBET may not act

as a simple spatial amplifier
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* Shock-ignition experiments exceed filamentation thresholds
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