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Fluid simulations show that a static ion-density 
modulation can change the convective unstable modes 
away from the quarter critical surface to absolute modes

Summary

•	 This conversion can occur for two-plasmon–decay (TPD) and 
stimulated Raman scattering (SRS) instabilities under realistic 
direct-drive inertial confinement fusion (ICF)conditions 

•	 A sufficiently large change of the density gradient
	 in a linear density profile can change the convective unstable 

modes to absolute modes

•	 An analytical expression is derived for the threshold of the 
gradient change, which depends only on the convective gain

TC12781

2



Collaborators

R. Yan, H. Liang, and C. Ren 

University of Rochester
Laboratory for Laser Energetics

3



2

0

–2

k x
(~

0/
c)

2

0

–2
k x

(~
0/
c)

1

0

t = 1.5 ps

nc/4 surface

t = 9.8 ps

t = 9.8 ps

–1
0.22

p
x(
m

ec
)

ne /nc

0.24 0.26

1.5

1.0

0.5

2.0
1.5
1.0
0.5

–20

–15

–10

–5
0

Ex (×10–3 arbitrary units)

Ex (×10–3 arbitrary units)

Charge density (×10–3 nc)

0
0.21

0.23

0.25

0.27

10

D
en

si
ty

 (
n

c)

20

Laser

Plasma density profile

L = 150 nm
Te = 3 keV

I = 6 × 1014 W/cm2

x (nm)
30

Our previous study* found that the TPD instability in a 
plasma with ion-density fluctuation plays an important 
role in hot-electron generation

Motivation

•	 TPD modes away from the nc/4 
surface appear in the nonlinear 
stage and form the first stage

	 of electron acceleration

•	 These modes were linked
	 to ion-density fluctuations

TC10207a
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*R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).



The particle-in-cell (PIC) simulation had a higher SRS 
reflectivity than a fluid code that considers only the 
convective gains with shock-ignition parameters*

TC12782
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*L. Hao et al., Phys. Plasmas 23, 042702 (2016).
**L. Hao et al., Phys. Plasmas 21, 072705 (2014).

***R. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002).
†SBS: stimulated Brillouin scattering
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Ion-density modulation can change the convective 
unstable modes to absolute modes

TC12783

•	 A previous study found that 1-D convective SRS modes can become 
absolute in the presence of ion-density modulation 

–	 the growth rates of the absolute modes reach a maximum at certain 
ion-density modulation amplitudes and wavelengths*

–	 the absolute thresholds for parabolic and sinusoidal density profiles 
and the growth rates for the parabolic density profile were derived 
theoretically with WKB solutions** 

•	 We study the behavior of TPD instability under ion-density fluctuations 
using LTS and WKB-type fluid simulations for direct-drive ICF

•	 LTS solves the linear TPD equations with arbitrary density profiles

–	 the TPD growth rates under linear density profiles were 
benchmarked with theory***
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*D. R. Nicholson and A. N. Kaufman, Phys. Rev. Lett. 33, 1207 (1974); 
D. R. Nicholson, Phys. Fluids 19, 889 (1976).

**G. Picard and T. W. Johnston, Phys. Fluids 28, 859 (1985);
E. A. Williams and T. W. Johnston, Phys. Fluids B 1, 188 (1989).

***R. Yan, A. V. Maximov, and C. Ren, Phys. Plasmas 17, 052701 (2010).
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We study TPD modes with sinusoidal static ion-density 
modulation in 2-D LTS* simulations

TC12784

•	 A static density modulation n1 = Dn sin(x/Lm) is added to a linear 
density profile n0 with the amplitude and wavelength relevant to OSIRIS 
simulation results

•	 The amplitudes of the TPD modes inside a narrow region centered
	 at 0.235 nc are measured to determine the existence of absolute modes
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*R. Yan, A. V. Maximov, and C. Ren, Phys. Plasmas 17, 052701 (2010).
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To isolate the essential physics, we also study 
the TPD modes in 1-D WKB-type simulations
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•	 Our WKB code solves
	 these equations

•	 The typical amplitude of phase 
mismatch is kmLm = 0.6 for 
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LTS and WKB simulations reasonably agree
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The maximum absolute growth rate is ~70% of the 
corresponding homogeneous TPD growth rate c0
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•	 The growth rate is 4× of that of the absolute modes 
near the nc/4 region
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This convective-to-absolute conversion also occurs 
for SRS instability under shock-ignition conditions
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Two-slope profile
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A two-slope density profile can lead to absolutely 
unstable solutions in a three-wave coupling system
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Solution:

Connect the solutions at x = 0:

x < 0

x > 0
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An analytical expression is derived for the threshold 
of the gradient change
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•	 The threshold st depends only on the gain parameter K
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The two-slope model can be used to assess the 
maximum growth rates of the density-modulation– 
induced absolute modes for a given density profile

TC12791
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The threshold formula of “s” works for sinusoidal 
density-modulation–induced absolute modes
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Summary/Conclusions
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•	 This conversion can occur for two-plasmon–decay (TPD) and 
stimulated Raman scattering (SRS) instabilities under realistic 
direct-drive inertial confinement fusion (ICF)conditions 

•	 A sufficiently large change of the density gradient
	 in a linear density profile can change the convective unstable 

modes to absolute modes

•	 An analytical expression is derived for the threshold of the 
gradient change, which depends only on the convective gain

Fluid simulations show that a static ion-density 
modulation can change the convective unstable modes 
away from the quarter critical surface to absolute modes


