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Summary

In general, both stimulated Raman scattering (SRS) and two-plasmon 
decay (TPD) will play a role in direct-drive laser–plasma interactions

•	 Absolute TPD and SRS thresholds have different dependencies
	 on laser and plasma parameters, but are comparable

•	 The modes with lowest thresholds tend to be either SRS or TPD;
	 mixed polarization modes seem unimportant

•	 Larger scale lengths and temperatures favor SRS; larger incidence 
angles favor TPD

•	 The analysis presented here is linear; however there is evidence
	 that the absolute SRS/TPD it describes persists well into
	 the nonlinear regime
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The origin in k space corresponds to the plasma-wave turning point, 
allowing SRS and TPD to be absolute there

•	 In general, instabilities can only be convective in inhomogeneous plasmas*

•	 Near the turning point, however, there is a finite threshold for absolute instability**

•	 Enhanced multibeam convective gain near the origin in k space suggests the potential
	 for absolute instability there

•	 Convective SRS occurs for n nc # 1 4; for absolute SRS, the electromagnetic (EM) decay wave
	 must have k , 0 and originate at n nc , 1 4
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*M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
**C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Rev. Lett. 31, 697 (1973); 

A. Simon et al., Phys. Fluids 26, 3107 (1983).
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Absolute SRS requires the component of k perpendicular 
to the density gradient to vanish
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•	 The y components of the plasma-wave group velocity				       are equal 
and opposite, so TPD is absolute in the y direction

•	 For SRS,					       and				         , so SRS will be convective
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For a single beam, the absolute TPD threshold* is lower 
than the Rosenbluth convective threshold

•	 The Simon threshold (adjusted for s-polarized oblique incidence) is

•	 The Rosenbluth convective gain is

•	 The nominal convective threshold is

•	 Therefore, the TPD absolute instability threshold lies below the convective 
instability threshold; this, in general, remains true for multiple beams

•	 The threshold for absolute SRS is comparable**
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*A. Simon et al., Phys. Fluids 26, 3107 (1983).
**C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
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Fourier analysis of the time-independent TPD equations results 
in a set of first-order linear differential equations
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•	 Absolute TPD and SRS occur near quarter-critical, so the local density profile
	 may be approximated by a linear gradient

•	 Fourier transforming in space, the wave equations become first-order linear equations 
for the longitudinal and transverse components of the small-k decay wave

•	 The larger-k decay wave may be taken to be longitudinal

•	 For N beams there are therefore 3N + 1 linear differential equations that are integrated 
from			   to			   to obtain the spatial gain

•	 Divergence of the gain indicates an onset of absolute instability; optimizing over ~ gives 
the threshold and frequency

–kx " 3 kx +" 3
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Fourier analysis of the time-independent TPD equations results in a set 
of first-order linear differential equations

•	 For a single beam, take the decay triangle in the x–y plane and normalize
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For smaller k9, TPD decay waves become more transverse

•	 The optimal SRS mode has k , 0 and is almost entirely electromagnetic

•	 The optimal TPD mode is almost entirely electrostatic (ES); for smaller k9, 
the EM component and the threshold increase
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The absolute threshold for TPD depends on angle of incidence 
and polarization
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For two p-polarized beams, an on-axis TPD mode (ky = 0) 
has the lowest threshold at larger incidence angles
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At larger angles, the on-axis mode is closer to the hyperbolas 
than the off-axis modes
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Light from absolute SRS will be emitted along the density gradient
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•	 The much-higher group velocity of the EM wave means the instability must 
be absolute in the direction perpendicular to the density gradient, i.e.,		
and the wave is purely transverse

•	 Phase matching, and therefore threshold, will be insensitive to temperature

•	 The spectrum of the emitted light will have the same dependence
	 on temperature as for TPD

•	 For s-polarization the threshold will be independent of pump incidence 
angle; for p-polarization the coupling is reduced for oblique incidence

	 and the threshold increases with angle

•	 Analysis of the k-space equations for a normally incident beam gives

	 a threshold of 			       , close to the Liu, Rosenbluth, and White result
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For oblique incidence, TPD and SRS behave differently as a function 
of incidence angle

•	 Increasing temperatures and scale lengths favor SRS; increasing 
incidence angles favor TPD

13

0
0

1

2

3

4

5

6

7

8

10 20 30

Angle of incidence (°)

T
h

re
sh

o
ld

 (
I 1

4)

40 50 60 0
0.0

0.5

1.0

1.5

2.0

2.5

20

Angle of incidence (°)

40 60

TPD s-polarized
TPD p-polarized
SRS s-polarized
SRS p-polarized

L(n) = 130
TkeV = 2

L(n) = 300
TkeV = 2



E22225a

The spectral signature of the absolute instability near nc /4 is a sharp 
red-shifted feature that can be used for Te measurements

•	 Although the absolute instability is obtained from linear analysis, it can remain
	 the most-intense TPD mode in the nonlinear regime, persisting throughout the pulse
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Summary/Conclusions
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In general, both stimulated Raman scattering (SRS) and two-plasmon 
decay (TPD) will play a role in direct-drive laser–plasma interactions

•	 Absolute TPD and SRS thresholds have different dependencies
	 on laser and plasma parameters, but are comparable

•	 The modes with lowest thresholds tend to be either SRS or TPD;
	 mixed polarization modes seem unimportant

•	 Larger scale lengths and temperatures favor SRS; larger incidence 
angles favor TPD

•	 The analysis presented here is linear; however there is evidence
	 that the absolute SRS/TPD it describes persists well into
	 the nonlinear regime


