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NL* electron transport and CBET** models are required in 1-D LILAC 
simulations to reproduce the mass ablation rate and the length  
of the conduction zone in cryogenic implosions on OMEGA

E24159

Summary

•	 The averaged mass ablation rate of the outer CD layer in cryogenic implosions 
was measured by imaging the self-emission x rays emitted by the target

•	 The length of the conduction zone was determined from the combination of the 
measurement of the self-emission x-ray imaging and the scattered-light spectrum

•	 This experiment cannot be reproduced with a time-dependent flux limiter

•	 One-dimesional LILAC simulations, including NL electron transport and CBET,  
reproduce the experimental observables 
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	 *	NL: Nonlocal
	 **	CBET: Cross-beam energy transfer
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Direct-drive inertial confinement fusion implosions are driven by laser energy absorbed 
near the critical density and transported by electrons to the ablation surface
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Measurement of the mass ablation rate and the size of the 
conduction zone constrain the hydrodynamic coupling.



In a cryogenic implosion, the averaged mass ablation rate  
of the CD outer layer was determined from the measurement  
of the time to burn through the CD
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Ablation front (CD) Ablation front (DT)

CD burnthrough Time

Self-emission x-ray imaging*

Expanding CD

20-nm
pinhole

300-nm Al +
1-nm PP**

50-ps 
microchannel plate

	 *	D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).
	 **	PP: polypropylene
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After the laser burns through the CD layer, the inner peak corresponds  
to the ablation surface and the outer peak corresponds to the CD/DT interface
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D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).
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Late time
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The ablation-front trajectories were determined  
from a series of self-emission images
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Late time
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The CD/DT interface trajectory was measured  
from the CD emission peak after the CD burnthrough*
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*A. K. Davis et al., Rev. Sci. Instrum. 85, 11D616 (2014).

The CD burnthrough corresponds to the time 
when the CD expands from the ablation surface.
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When matching shell trajectory, time-dependent flux-limited (FL) simulations 
underestimate the averaged mass ablation rate of the CD by 10%
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The averaged mass ablation rate of the CD was reproduced  
when using NL and CBET models
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The scattered-light spectrum provides a measure of the time  
when the CD/DT interface reaches the laser-absorption region
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The scattered-light diagnostic collects the light coming 
from every beam with various angles of incidence.
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The more red-shifted light comes from the rays with a lower angle  
of incidence that penetrate closer to the ablation surface
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When the DT reaches the absorption region, the velocity of the critical-surface 
jumps, resulting in a jump in the maximum red-shifted wavelength*

E24164
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*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

This jump in a red-shifted light provides a measure of 
the time when the DT reaches the absorption region.

2.0
50

100

150

200

2.4

t (ps)

V
 (

km
/s

)

VCD (nc)

VDT (nc)

2.8 3.2 2.0 2.4

t (ns)

D
m

 (
Å

)

2.8

5% contour

3.2
0 1.0

log (I)

1.5

2.0

2.5

3.0

3.5

1

2

3
74350

DT at nc

0

100

200

300

400

R
 (
n

m
)



The combination of the scattered-light spectrum and the self-emission x-ray 
imaging allows the length of the conduction zone to be determined*

E24165
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*D. T. Michel et al., Phys. Rev. Lett. 114, 155002 (2015).

When the DT reaches the absorption region, the length of the conduction zone 
corresponds to the distance between the CD/DT interface and the ablation front. 
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The size of the conduction zone is well reproduced  
when using NL and CBET models

E24166

15

When matching shell trajectory, time-dependent flux-limited simulations 
underestimate the length of the conduction zone by nearly a factor of 2.
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Summary/Conclusions

E24159

NL electron transport and CBET models are required in 1-D LILAC  
simulations to reproduce the mass ablation rate and the length  
of the conduction zone in cryogenic implosions on OMEGA

•	 The averaged mass ablation rate of the outer CD layer in cryogenic implosions 
was measured by imaging the self-emission x rays emitted by the target

•	 The length of the conduction zone was determined from the combination of the 
measurement of the self-emission x-ray imaging and the scattered-light spectrum

•	 This experiment cannot be reproduced with a time-dependent flux limiter

•	 One-dimesional LILAC simulations, including NL electron transport and CBET,  
reproduce the experimental observables 



When the DT reaches the absorption region, the maximum red-shifted 
wavelength jumps in the scattered light spectrum

E24168
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When the DT reaches the absorption region, the velocity of 
the critical surface jumps, resulting in a jump in the maximum 
red-shifted wavelength in the scattered-light spectrum.
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LILAC simulations that include NL and CBET reproduce both  
the absorption and the kinetic energy of the shell
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The code accurately models the hydrodynamic 
coupling in cryogenic implosions.
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DRACO simulations of cryogenic implosions show that perturbations  
have a minimal impact on the measurement of the burnthrough time*
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*DRACO simulations were performed with and without perturbations seeded
by target offset, DT ice roughness, and laser imprint up to mode 150.
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The growth of perturbations on the shell are governed by the mass ablation 
rate and the length of the conduction zone
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The conduction zone smooths the laser imprint while the mass ablation 
rate reduces the imprint and the growth of the Rayleigh–Taylor instability.

	 *	V. N. Goncharov et al., Phys. Plasmas 7, 2062 (2000).
	 **	R. Betti et al., Phys. Plasmas 5, 1446 (1998).

Conduction zone smoothing

Reduce the imprint:*
– reduce the time to create 
 the conduction zone
– reduce the amplitude 
 of the modulations caused by 
 the dynamic overpressure

Reduce the Rayleigh–Taylor growth**

Reduce the imprint
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