A Numerical Investigation of Two-Plasmon–Decay Localization in 60-Beam Spherical Implosion Experiments on OMEGA

J. F. Myatt University of Rochester Laboratory for Laser Energetics 44th Annual Anomalous Absorption Conference Estes Park, CO 8–13 June 2014

Summary

Three-dimensional calculations demonstrate the spatial localization of two-plasmon decay (TPD) in spherical implosions

- Multibeam laser-plasma instabilities (LPI's) have to be studied in three dimensions
- The laser-plasma simulation environment (LPSE) code describes TPD in 3-D
 - fast, makes efficient use of memory, and extensible
 - includes 3-D visualization tools
 - three-dimensional calculations can be performed in ~1 h
- LPSE calculations show TPD localization in spherical targets that is consistent with experimental observations

Collaborators

J. Shaw, J. Zhang, A. V. Maximov, R. W. Short, W. Seka, D. H. Edgell, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

D. F. DuBois and D. A. Russell

Lodestar

H. Vu

UCSD

It is important to know the stability of direct-driveimplosion designs with respect to multibeam TPD

- We want to construct "in-line" models of TPD that can be implemented in hydrocodes
 - quantify the effects of TPD on time-dependent drive
 - account for hot-electron preheat
- A model that can be used to search for and test TPD mitigation strategies is required
 - linear threshold*
 - nonlinear saturation

 $(\omega_{\text{EPW1}}, k_{\text{EPW1}})$ $(\omega_{\text{pump}}, k_{\text{pump}})$ $(\omega_{\text{EPW2}}, k_{\text{EPW2}})$ EPW: electron plasma wave

LPSE is a practical model that is being used to address these questions

- It solves the fundamental TPD equations for linear response in an arbitrary hydrodynamic profile (density, temperature, velocity) with an arbitrary number of beams
- LPSE includes nonlinear saturation mechanisms that are related to the coupling of Langmuir waves (LW's) to low-frequency density fluctuations
 - performance (one run in ~1 h on 96 Intel cores)
 - setup (either planar or spherical target simulations are automated)
 - connected to experiment via "diagnostics" package
 - tools for the exploration/visualization of large 3-D data sets
- LPSE is extensible!

The simulation volume is determined by the density scale length and the Langmuir wave correlation length

The "laser package" automatically sets up the laser beams according to a location (r, θ, ϕ) on the $n_c/4$ surface

• Phase plates and polarizations [including distributed polarization rotators (DPR's)] can be specified

The "laser package" automatically sets up the laser beams according to the (r,θ,ϕ) location on the $n_c/4$ surface

The reasons for TPD spatial dependence can be understood by considering a sample path

centers of HEX or PENT ports

Six beams can cooperate at the hex center, while fewer beams contribute at other locations

centers of HEX or PENT ports

A series of runs computed the effects of an excursion across H17 with both large (SG4) and small (SG2) spot phase plates

TC11300

A series of runs computed the effects of an excursion across H17 with both large (SG4) and small (SG2) spot phase plates

TC11300a

A series of runs computed the effects of an excursion across H17 with both large (SG4) and small (SG2) spot phase plates

TC11300b

The LPSE simulations show that TPD depends on the beam spot shape (at constant power and hydrodynamics)

- The plot shows the dependence of the saturated LW rms (root-mean-square) energy density on the position of the n_c/4 surface
- SG4 phase plates have a focal spot that is close to the target diameter in size; SG2 phase-plate spots are roughly half the diameter
- Can be compared with the observations of local temperature "islands"*

^{*}W. Seka et al., Phys. Rev. Lett. <u>112</u>, 145001 (2014).

The LPSE simulations predict a similar structure to that observed in half-harmonic images through a hex port*

There is too much detail to absorb; we can look at subvolumes* of the calculation (e.g., 1/256th)

*Various utility programs manipulate the ~100-GB files (per field component)

Interesting ion-acoustic wave dynamics can be seen in the small subvolume straddling the $n_c/4$ surface

Interesting ion-acoustic wave dynamics can be seen in the small subvolume straddling the $n_c/4$ surface

TC11302a

Isosurfaces of Langmuir wave intensity show cavitation and collapse near $n_c/4$

A variant of LPSE is being tested in 2-D that directly computes half-harmonic emission*

- Half-harmonic emission can be generated in various ways
 - linear conversion
 - nonlinear conversion
 - Thomson scattering
- A transverse wave envelope is required
- Linear and nonlinear conversion
 are competitive
- The algorithm can be implemented in 3-D LPSE

UR

*J. Zhang, Ph.D. student, Mechanical Engineering Department, University of Rochester, Rochester, NY.

TC11254

Summary/Conclusions

Three-dimensional calculations demonstrate the spatial localization of two-plasmon decay (TPD) in spherical implosions

- Multibeam laser-plasma instabilities (LPI's) have to be studied in three dimensions
- The laser-plasma simulation environment (LPSE) code describes TPD in 3-D
 - fast, makes efficient use of memory, and extensible
 - includes 3-D visualization tools
 - three-dimensional calculations can be performed in ~1 h
- LPSE calculations show TPD localization in spherical targets that is consistent with experimental observations

The computational resources required for 3-D LPI simulations are quite significant

- Code
 - C⁺⁺ (~ten classes + ten utilities + Yorick scripts)
 - uses MPI, FFTW, and MKL libraries
 - visualization software uses Qt + GL libraries
 - well documented*
- Algorithm
 - 14 fast Fourier transforms (FFT's) per iteration
 - metrics and virtual instrumentation
 - O (10⁸ to 10⁹) nodes, nine degrees of freedom/node
- CPU time: O (1 to 10) hours using 100 cores
- I/O: two or three large files, O (10 to 100) GB

× 256

