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Experiments on OMEGA
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Three-dimensional calculations demonstrate
the spatial localization of two-plasmon decay (TPD) 
in spherical implosions

Summary

•	 Multibeam laser–plasma instabilities (LPI’s) have to be studied
	 in three dimensions

•	 The laser–plasma simulation environment (LPSE) code describes 
TPD in 3-D

–	 fast, makes efficient use of memory, and extensible

–	 includes 3-D visualization tools

–	 three-dimensional calculations can be performed in ~1 h

•	 LPSE calculations show TPD localization in spherical targets that
	 is consistent with experimental observations
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It is important to know the stability of direct-drive– 
implosion designs with respect to multibeam TPD

TC11296

•	 We want to construct “in-line” models of TPD that can be 
implemented in hydrocodes

–	 quantify the effects of TPD on time-dependent drive

–	 account for hot-electron preheat

•	 A model that can be used to search for and test TPD mitigation 
strategies is required

–	 linear threshold*

–	 nonlinear saturation

(~EPW2, kEPW2)

(~EPW1, kEPW1)

(~pump, kpump)

e–

e–

*R. W. Short, J. F. Myatt, and J. Zhang, this conference.

EPW: electron plasma wave



LPSE is a practical model that is being used 
to address these questions

TC11297

•	 It solves the fundamental TPD equations for linear response in an 
arbitrary hydrodynamic profile (density, temperature, velocity) with

	 an arbitrary number of beams

•	 LPSE includes nonlinear saturation mechanisms that are related to the 
coupling of Langmuir waves (LW’s) to low-frequency density fluctuations

–	 performance (one run in ~1 h on 96 Intel cores)

–	 setup (either planar or spherical target simulations are automated)

–	 connected to experiment via “diagnostics” package

–	 tools for the exploration/visualization of large 3-D data sets

•	 LPSE is extensible!



The simulation volume is determined by the density scale 
length and the Langmuir wave correlation length
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•	 i.e., it is a local analysis
	 in the neighborhood of a point 

r = (r,i,z) on the quarter-
	 critical surface

•	 Times up to 100 ps
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The “laser package” automatically sets up the laser beams 
according to a location (r,i,z) on the nc /4 surface
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•	 Phase plates and polarizations [including distributed polarization 
rotators (DPR’s)] can be specified

Visualized with LPSE plotter
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The “laser package” automatically sets up the laser beams 
according to the (r,i,z) location on the nc /4 surface
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The reasons for TPD spatial dependence can 
be understood by considering a sample path
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•	 Multibeam TPD favors symmetry

–	 bisectors of beam pairs

–	 centers of HEX or PENT ports

DDP = SG4
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beams contribute at other locations
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•	 Multibeam TPD favors symmetry

–	 bisectors of beam pairs

–	 centers of HEX or PENT ports

DDP = SG4



A series of runs computed the effects of an excursion 
across H17 with both large (SG4) and small (SG2) spot 
phase plates
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A series of runs computed the effects of an excursion 
across H17 with both large (SG4) and small (SG2) spot 
phase plates

27

39

12
50

69

14
23

1827

39

12
50

69

R = 500 nm
i = 131.9°
z = 54.0°

End of simulation box:
ne = 0.19 nc

14
23

18

z y

x

H

P

P P
H

HH

3030 2525

2530

12

27 18

23 14

50 6939

15 n
m

15
 n

m



TC11300b

A series of runs computed the effects of an excursion 
across H17 with both large (SG4) and small (SG2) spot 
phase plates
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The LPSE simulations show that TPD depends on the 
beam spot shape (at constant power and hydrodynamics)
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•	 The plot shows the 
dependence of the saturated 
LW rms (root-mean-square) 
energy density on the 
position of the nc /4 surface

•	 SG4 phase plates have a 
focal spot that is close to 
the target diameter in size; 
SG2 phase-plate spots are 
roughly half the diameter

•	 Can be compared with 
the observations of local 
temperature “islands”*

*W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).



The LPSE simulations predict a similar structure to that 
observed in half-harmonic images through a hex port*

TC11255 *W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).
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There is too much detail to absorb; we can look 
at subvolumes* of the calculation (e.g., 1/256th)

TC11301
*Various utility programs manipulate the ~100-GB files (per field component)
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Interesting ion-acoustic wave dynamics can be seen 
in the small subvolume straddling the nc /4 surface
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Interesting ion-acoustic wave dynamics can be seen 
in the small subvolume straddling the nc /4 surface
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Isosurfaces of Langmuir wave intensity show cavitation 
and collapse near nc /4
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A variant of LPSE is being tested in 2-D that directly 
computes half-harmonic emission*
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•	 Half-harmonic emission can be generated
	 in various ways

–	 linear conversion

–	 nonlinear conversion

–	 Thomson scattering

•	 A transverse wave envelope
	 is required

•	 Linear and nonlinear conversion
	 are competitive

•	 The algorithm can be implemented
	 in 3-D LPSE

*J. Zhang, Ph.D. student, Mechanical Engineering Department, 
University of Rochester, Rochester, NY.
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Summary/Conclusions

TC11295

Three-dimensional calculations demonstrate
the spatial localization of two-plasmon decay (TPD) 
in spherical implosions

•	 Multibeam laser–plasma instabilities (LPI’s) have to be studied
	 in three dimensions

•	 The laser–plasma simulation environment (LPSE) code describes 
TPD in 3-D

–	 fast, makes efficient use of memory, and extensible

–	 includes 3-D visualization tools

–	 three-dimensional calculations can be performed in ~1 h

•	 LPSE calculations show TPD localization in spherical targets that
	 is consistent with experimental observations
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The computational resources required for 3-D LPI 
simulations are quite significant

•	 Code

		  –  C++ (~ten classes + ten utilities 
	     + Yorick scripts)

–	 uses MPI, FFTW, and MKL libraries

–	 visualization software uses 
Qt + GL libraries

–	 well documented*

• Algorithm

–	 14 fast Fourier transforms (FFT’s)
	 per iteration

–	 metrics and virtual instrumentation

–	 O (108 to 109) nodes, nine degrees
	 of freedom/node

• CPU time: O (1 to 10) hours using 100 cores

• I/O: two or three large files, O (10 to 100) GB

1024 × 256
× 256

Many grid
cells!

*http://florence.lle.rochester.edu




