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in Direct-Drive–Implosions on OMEGA

OMEGA constant hot-spot pressure
(180 Gbar 1-D), areal density (tR = 300 mg/cm2)

implosion velocity, Vimp = 3.7 × 107 cm/s)
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Summary

Hydrodynamic equivalence on OMEGA will require 
reducing cross-beam energy transfer (CBET) and/or 
improving the stability threshold

Summary

•	 CBET reduces the ablation pressure by over 50% in hydro- 
equivalent designs

•	 Experiments have demonstrated increased hydroefficiency 
with reduced focal-spot size

•	 Calculations suggest that zooming can recover all of the ablation 
pressure lost to CBET without negatively impacting the hydro stability

•	 A full-aperture zooming scheme is being developed that uses 
bandwidth to control the focal-spot size and could provide more 
on-target energy with full laser-beam smoothing
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CBET reduces the energy coupled  
to the fusion capsule
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CBET reduces the most hydrodynamically 
efficient portion of the incident laser beams.

Target

CBET is spatially
limited near M ~ 1

Energy is transferred
between beams 
by ion-acoustic 
waves 
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	 *	I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).
 	**	D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).

CBET modeling is required to match the experimental 
observables (scattered light, implosion velocity, 
and bang time)*  

CBET reduces the ablation pressure by ~45%.



CBET reduces the ablation pressure by over 50% 
in hydro-equivalent OMEGA designs
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Experiments have demonstrated that CBET  
can be mitigated by reducing the energy that 
propagates past the target

D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012);
D. T. Michel et.al., Rev. Sci. Instrum. 83, 10E530 (2012).
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The reduced-beam overlap results in nonuniformities 
on the imploding shell
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Reducing the beam diameters is a trade-off between improved 
coupling (thicker shells) and increased low-mode nonuniformity.



Simulations suggest that reducing the beam diameters 
by 20% (Rb/Rt = 0.8) will have minimal impact on the hot-
spot symmetry

TC9894a I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).
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Reducing the beam diameters by more than 20% significantly 
degrades the target performance.

2-D DRACO simulations
(low-order nonuniformities only)



New phase plates are currently being fabricated for 
OMEGA that will provide the flexibility to vary the target 
diameter while maintaining relevant intensities
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•	 The new distributed phase plates (DPP’s) 
(R95   = 400 nm, nSSD = 5) will have 
improved azimuthal symmetry and  
reduced tails

•	 Experiments will scale the target  
radius to test a range of CBET  
reduction options 

Experiments with Rt = 480 nm 
(Rb/Rt = 0.8) will recover half 
of the ablation pressure lost 
to CBET.
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Zooming after the third picket is predicted to maintain good low-mode uniformity.

To reduce the laser spot without introducing nonuniformities, 
the diameter of the laser beams must be reduced after  
a sufficient conduction zone has been developed

I. V. Igumenshchev et al. Phys. Rev. Lett. 110, 145001 (2013).



Zooming could be implemented on OMEGA using a 
radially varying phase plate and a dynamic near field*
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A ZPP design has a region of high-spatial-frequency phase to produce 
a large spot and a region of low-frequency phase to produce a small spot.

*D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
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The smaller-diameter laser beams used during the 
pickets increase the power spectrum over the modes 
with the highest Rayleigh–Taylor growth rates

0
10–3

10–2

10–1

40S
in

g
le

-b
ea

m
 p

o
w

er
 s

p
ec

tr
u

m

80

Mode ,

Analytic calculations*

120

Half aperture
Full aperture

DPP 

Focusing lens 

1-ns drive beams 

Full-diameter 
beam 

Half-apertured
beam

15-nm
CH target 

Aperture 

100-ps imprint beam 

X-ray framing
camera (XRFC) 

Sub-aperture imprint
experimental setup

*R. Epstein, J. Appl. Phys. 82, 2123 (1997).E22168a

The effect of increased power spectrum resulting from the 
reduced beam diameters was tested in planar experiments.
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The increased power spectrum was measured 
to produce increased imprint levels over the 
mid-frequency modes

E22927b *Experiments by G. Fiksel.
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Pd mitigates the high frequency growth (>80) but the 
increased mode ~30 perturbation is still a concern.

	 *	M. Karasik et al., Bull. Am. Phys. Soc. 58, 370 (2013).
	**	Experiments by G. Fiksel.

X rays from a thin, high-Z layer (600-Å Pd)  
were used to reduce the imprint*



A multipulse driver line is currently being implemented 
on OMEGA to support CBET mitigation projects
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•	 The reduced bandwidth during the main drive leads to ~10% higher 
frequency conversion (~28-kJ total energy)

•	 The near-field laser profiles will be independent, allowing spherical 
experiments to test imprint mitigation schemes
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Mitigation of imprint from sub-aperture beams 
could lead to coaxial zooming in FY16.



A full-aperture zooming scheme is being developed  
that uses bandwidth to control the focal-spot size  
and could provide more on-target energy (28 kJ)  
with full laser-beam smoothing

E22929a

•	 Full-aperture zooming will provide the 
flexibility to increase target diameter

–	 larger hot spot for improved 
stability threshold

–	 reduced hot-electron fraction

•	 A new optic is under development that 
uses dynamic bandwidth reduction to 
control the spot size of the laser

•	 A model of the new zooming/
smoothing scheme will be

–	 integrated into our hydrocodes  
to assess their performance

–	 used to optimize the design  
of the new optics

Full-aperture zooming provides a viable path to hydro-equivalence 
but will likely require multilayer targets to mitigate TPD.
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Summary/Conclusions

Hydrodynamic equivalence on OMEGA will require 
reducing cross-beam energy transfer (CBET) and/or 
improving the stability threshold

•	 CBET reduces the ablation pressure by over 50% in hydro- 
equivalent designs

•	 Experiments have demonstrated increased hydroefficiency 
with reduced focal-spot size

•	 Calculations suggest that zooming can recover all of the ablation 
pressure lost to CBET without negatively impacting the hydro stability

•	 A full-aperture zooming scheme is being developed that uses 
bandwidth to control the focal-spot size and could provide more 
on-target energy with full laser-beam smoothing


