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Hot-electron production at the Omega Laser Facility 
scales empirically with the two-plasmon–decay (TPD) 
common-wave gain and can guide experimental design

Summary

•	 The	TPD	common-wave	scaling	indicates	that	cross-beam	energy	
transfer (CBET) reduces the hot-electron production in current 
OMEGA cryogenic implosions by an order of magnitude

•	 If	CBET	is	mitigated	to	achieve	ignition	hydrodynamic	equivalence	
then	TPD	mitigation	will	likely	be	required

•	 The	TPD	scaling	predicts	that	mitigation	with	mid-Z layers 
will reduce the hot-electron production in advanced OMEGA 
cryogenic implosions
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Ice-layer preheat from hot electrons must be kept below 
0.04% of the laser energy for ignition

•	 Theory	suggests	that	TPD	will	
vary as  I ∙ Ln  Te at ne /4

– I = laser intensity

– Ln = density scale length

– Te = electron temperature

•	 TPD	transfers	laser	energy	to	
Langmuir waves that produce 
hot electrons

E23224

*LLE Review Quarterly Report 79, 121, LLE Document No. DOE/SF/19460-317, NTIS Order 
No. DE2002762802 (1999); C. Stoeckl et al.,” Phys. Plasmas 9 (5), 2195-2201 (2002).

Calculations suggest that the fraction of laser energy 
converted to hot electrons should be kept low*.
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The common-wave gain provides a useful empirical 
scaling that unifies different experimental geometries*

E21699m

•	 Intensity	was	scanned	during	each	study

•	 During	these	intensity	scans,	Ln  Te differed between studies 
but was roughly constant within each scan
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*D. T. Michel et al., Phys. Plasmas 20, 055703 (2013).



The maximum TPD growth rate is driven by beams with 
a common angle to the electron plasma wave (EPW)
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*C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003).
**D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
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•	 Experiments	suggest	that	TPD
 is driven by multiple beams*

•	 Linear	theory	shows	that	a	resonant	
EPW is shared by multiple beams in 
the region bisecting the wave vectors

 of the beam**

•	 A	hydrodynamic	post-processing	
code finds the maximum gain from all 
possible beam groups at each point in 
the	quarter-critical	surface

– ray tracing finds the intersection 
of	the	beams	with	the	quarter-
critical surface (positions and 
k vectors) and their intensities 
(including CBET)



CBET significantly lowers the single-beam peak 
intensity	that	reaches	the	quarter-critical	surface
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Single-beam intensity at nc /4 surface

30% reduction in peak intensity from CBET
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CBET significantly lowers the common-wave gain 
and changes its distribution across the target surface
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If CBET is mitigated,* hot-electron production could increase.

*D. H. Froula et al., this conference.
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CBET mitigation strategies based on reduced beam size 
are being evaluated for implementation on OMEGA*
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•	 CBET	typically	results	in	transfer	
of power from the center of the 
ingoing beam to the edge of the 
outgoing beam

•	 Decreasing	the	beam	profile	
diameter reduces the edge 
seed that takes power from the 
ingoing beams

dPCBET
s
/

*D. H. Froula et al., this conference.



Experiments have shown that reducing the beam radius 
increases the hot-electron production

TC11241 *DPP: distributed phase plate
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A	hydro-equivalent	experiment	on	OMEGA	
will	likely	require	TPD	mitigation
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If	CBET	mitigation	is	needed	to	get	a	stable	hydro-equivalent	implosion,	
the TPD gain and hot-electron production will increase.

D. H. Froula et al., this conference.
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Multilayer targets are designed to reduce TPD 
by	increasing	the	temperature	at	quarter	critical

E22574a

Multilayer Te

Multilayer ne

CH Te

Multilayer target at t = 2 ns

0.7 nm 
9.4 nm 

Reduced
imprint*

Increased rocket
efficiency**

E
le

ct
ro

n
 t

em
p

er
at

u
re

 (
ke

V
)

Radius (nm)

E
le

ct
ro

n
 d

en
si

ty
 (

cm
–3

)

1

3

0

2

400200 600 800 1000
1020

1021

1022

1023

1024CH + 8% Si
Si
Be

3.7 nm 

~430 n
m

Reduced
laser–
plasma
instability
(LPI)***

 * S. X. Hu et al. Phys. Rev. Lett. 108, 195003 (2012); G. Fiksel et al., Phys. Plasmas 19, 062704 (2012).
 ** D.T. Michel et al. “Demonstration of the Improved Rocket Efficiency in Direct-Drive    
  Implosions using Different Ablator Materials,” submitted to Physical Review Letters;
*** V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).



Experimental tests of multilayer targets produced 
many fewer hot electrons than CH targets

TC11238

•	 The	higher	coronal	temperatures	in	the	mid-Z layer reduce 
the TPD-produced hot electrons
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Gmax = 2.3
fhot     0.035%
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Mid-Z multilayers are predicted to significantly 
reduce hot-electron production

E23091



A new pulse shape with a high-intensity peak 
at the end of the pulse is being studied for cryo
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•	 Putting	more	of	the	drive	pressure	at	the	end	of	the	pulse	
improves performance by delaying shell deceleration
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The proposed cryo pulse shape is predicted to keep 
the gain and electron production acceptably low
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Summary/Conclusions
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•	 The	TPD	common-wave	scaling	indicates	that	cross-beam	energy	
transfer (CBET) reduces the hot-electron production in current 
OMEGA cryogenic implosions by an order of magnitude

•	 If	CBET	is	mitigated	to	achieve	ignition	hydrodynamic	equivalence	
then	TPD	mitigation	will	likely	be	required

•	 The	TPD	scaling	predicts	that	mitigation	with	mid-Z layers 
will reduce the hot-electron production in advanced OMEGA 
cryogenic implosions

Hot-electron production at the Omega Laser Facility 
scales empirically with the two-plasmon–decay (TPD) 
common-wave gain and can guide experimental design


