

K. S. ANDERSON, P. W. MCKENTY, T. J. B. COLLINS, J. A. MAROZAS, M. LAFON*, and R. BETTI* **University of Rochester, Laboratory for Laser Energetics**

*also Fusion Science Center for Extreme States of Matter

An Implosion-Velocity Survey for Shock Ignition at the National Ignition Facility LLE

FSC

Simulations of shock ignition (SI) at the National Ignition Facility (NIF) indicate best performance and stability at velocities below 3×10^7 cm/s

- A parameter study was performed, varying the implosion velocity and quantifying target robustness in 1-D and 2-D for plastic-ablator cryogenic capsules
- This study used polar-drive beam geometry to evaluate longwavelength perturbations and laser imprint to study short wavelengths
- The target margin in 2-D with polar drive was relatively constant with implosion velocity
- Low-velocity capsules showed less sensitivity to laser imprint

TC10737a

The optimal implosion velocity for shock ignition is constrained by both one-dimensional dynamics and multidimensional stability characteristics

ROCHESTER

Shock ignition separates the fuel-assembly phase from the ignition phase using a single laser system

The late-time shock amplifies the hot-spot pressure.

Robustness to long-wavelength modes was evaluated using polar-drive nonuniformities and to short-wavelength modes using laser imprint

*Multi-frequency-modulated smoothing by spectral dispersion

TC11002a

The target margin is quantified using the ignition threshold factor (ITF)*

B. K. Spears et al., Phys. Plasmas <u>19</u>, 056316 (2012).

The previous high-velocity ($v = 3.1 \times 10^7$ cm/s) SI design of 2012 was shown to be largely insensitive to most sources of nonuniformity

Ignites in polar drive with

FSC

- 5× NIF-spec inner ice roughness
- 5× NIF-spec outer surface roughness in modes 2 to 50
- 10% rms (root mean square) beam-to-beam power imbalance
- 100-ps rms beam-to-beam mistiming
- 100- μ m rms beam mispointing
- Expected level of imprint with multi-FM* SSD in modes 2 to 100
- Target offset up 25 μ m

The previous SI* design for the NIF showed the strongest sensitivity to polar-drive beam geometry and laser imprint

Three new designs were analyzed; the velocities were varied by changing the target thickness

Velocity (cm/s)	2.6 × 10 ⁷	2.8 × 10 ⁷	3.0 × 10 ⁷
Gain (1-D)	69	62	58
ITF (1-D)	2.5	3.5	4.2
IFAR _{2/3}	14	17	20

TC10739a

The margin in 2-D polar-drive (PD) simulations increases at higher implosion velocities

*Previous design (2012-squares) used 5-ring half-quad PD scheme Each target is independently optimized for PD beam pointing and power balance

TC10740a

FSC

Low-velocity, low-IFAR targets show less susceptibility to imprint

LLE

ITF analysis with laser imprint is in progress.

Abstract

Shock ignition (SI)* has been proposed as a low-energy, high-gain alternative path to ignition at the National Ignition Facility (NIF). In SI, a high-intensity (several times 10^{15} TW/cm²) laser spike pulse added at the end of the main compression pulse launches a strong shock into the precompressed capsule, raising the hot-spot pressure and temperature. Because of this spike pulse, SI targets can achieve ignition temperatures at lower shell velocities than standard hot-spot implosions. As with hot-spot inertial confinement fusion, optimizing ignition margin in SI implosions requires finding an implosion velocity that balances 1-D target performance with multidimensional stability characteristics. Polar-drive SI designs for the NIF at 700 kJ will be reviewed and compared for stability and margin in 1-D and 2-D simulations at implosion velocities varying from 2.6 to 3.0×10^7 cm/s. Stability studies will include both polar-drive beam geometry and beam repointing as well as laser imprinted nonuniformities from laser speckle.

This material is based upon work supported by the Department of Energy national Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

