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Simulations of shock ignition (SI) at the National Ignition 
Facility (NIF) indicate best performance and stability  
at velocities below 3 × 107 cm/s

Summary

• A parameter study was performed, varying the implosion velocity 
and quantifying target robustness in 1-D and 2-D for plastic-ablator 
cryogenic capsules

• This study used polar-drive beam geometry to evaluate long- 
wavelength perturbations and laser imprint to study short wavelengths

• The target margin in 2-D with polar drive was relatively constant with 
implosion velocity 

• Low-velocity capsules showed less sensitivity to laser imprint

TC10737a

FSC



The optimal implosion velocity for shock ignition is 
constrained by both one-dimensional dynamics and 
multidimensional stability characteristics
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The optimal implosion velocity for shock ignition 
depends on adiabat and ignitor shock strength.
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Shock ignition separates the fuel-assembly phase  
from the ignition phase using a single laser system

TC10153c R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
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The late-time shock amplifies the hot-spot pressure.
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Robustness to long-wavelength modes was  
evaluated using polar-drive nonuniformities  
and to short-wavelength modes using laser imprint

TC11002a

Laser imprint modeled 
using multi-FM SSD*
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*Multi-frequency-modulated smoothing by spectral dispersion



The target margin is quantified using the ignition 
threshold factor (ITF)*

TC8570c
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* D. S. Clark et al., Phys. Plasmas 15, 056305 (2008);
 P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010);
*B. K. Spears et al., Phys. Plasmas 19, 056316 (2012).

ITF = MYOC–1.5



The previous high-velocity (v = 3.1 × 107 cm/s)  
SI design of 2012 was shown to be largely  
insensitive to most sources of nonuniformity

TC10162c

Ignites in polar drive with

• 5× NIF-spec inner ice roughness

• 5× NIF-spec outer surface 
roughness in modes 2 to 50

• 10% rms (root mean square)
beam-to-beam power imbalance

• 100-ps rms beam-to-beam 
mistiming

• 100-nm rms beam mispointing

• Expected level of imprint with  
multi-FM* SSD in modes 2 to 100

• Target offset up 25 nm
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Ignites with a gain of 38 with all 
expected levels of nonuniformity  
and system uncertainty.

*LLE Review Quarterly Report 114, 73, LLE Document No. DOE/NA/28302-826 (2008). 
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The previous SI* design for the NIF showed the 
strongest sensitivity to polar-drive beam geometry  
and laser imprint
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*K. S. Anderson et al., Phys. Plasmas 20, 056312 (2013).
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Three new designs were analyzed; the velocities were 
varied by changing the target thickness
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Velocity (cm/s) 2.6 × 107 2.8 × 107 3.0 × 107

Gain (1-D) 69 62 58

ITF (1-D) 2.5 3.5 4.2

IFAR2/3 14 17 20

834 to 889 nm
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The margin in 2-D polar-drive (PD) simulations increases  
at higher implosion velocities
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*Previous design (2012-squares) 
used 5-ring half-quad PD scheme

Each target is independently optimized  
for PD beam pointing and power balance
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Low-velocity, low-IFAR targets show  
less susceptibility to imprint
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ITF analysis with laser imprint is in progress.



Abstract

Shock ignition (SI)* has been proposed as a low-energy, high-gain alternative 
path to ignition at the National Ignition Facility (NIF). In SI, a high-intensity 
(several times 1015 TW/cm2) laser spike pulse added at the end of the 
main compression pulse launches a strong shock into the precompressed 
capsule, raising the hot-spot pressure and temperature. Because of this 
spike pulse, SI targets can achieve ignition temperatures at lower shell 
velocities than standard hot-spot implosions. As with hot-spot inertial 
confinement fusion, optimizing ignition margin in SI implosions requires 
finding an implosion velocity that balances 1-D target performance with 
multidimensional stability characteristics. Polar-drive SI designs for the NIF 
at 700 kJ will be reviewed and compared for stability and margin in 1-D and 
2-D simulations at implosion velocities varying from 2.6 to 3.0 × 107 cm/s. 
Stability studies will include both polar-drive beam geometry and beam 
repointing as well as laser imprinted nonuniformities from laser speckle. 
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