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Two-Plasmon Decay Driven by Multiple Laser Beams
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Two-plasmon decay (TPD) driven by multiple beams  
in inhomogeneous plasma is investigated using ZAK3D*
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Summary

•	 Multibeam effects have been observed to be important in the 
TPD instability**

•	 Convective growth of shared plasma waves having k ~ k0 have 
been predicted theoretically†

•	 Our simulations recover this result, but indicate that small-k 
modes can share plasma waves and therefore give a lower 
absolute threshold for multiple beams

•	 ZAK3D models the nonlinear coupling to ion-density fluctuations

•	 In the nonlinear stage, Rosenbluth convective gain is not 
observed because of the existence of ion-acoustic fluctuations

•	 This might be able to explain why OMEGA experiments have 
shown hot-electron production for small convective gain

	*	J. Zhang et al., Bull. Am. Phys. Soc. 57, 299 (2012).
	**	C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003);  
		 D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
	 †	R. W. Short et al., Bull. Am. Phys. Soc. 57, 300 (2012).



Collaborators

J. F. Myatt, R. W. Short, and A. V. Maximov
University of Rochester

Laboratory for Laser Energetics

H. X. Vu 
University of California, San Diego, CA

D. F. DuBois and D. A. Russell  
Lodestar Research Corporation, Boulder, CO



The ZAK3D model is a time-enveloped fluid moment 
model that describes the coupling between Langmuir 
and ion-acoustic fluctuations

TC10648

Zakharov equation†
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	†	D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995);
		 D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).



The Zakharov model makes some approximations
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Approximations

Limitation

(1) lack of kinetic effects

(2) dissipation is included only approximately

(3) time envelope removes higher-order harmonics
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The temporal growth rate agrees very well  
with Simon* predictions for a single-plane 
electromagnetic (EM) wave
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	*	Simon et al., Phys. Fluids 26, 3107 (1983). 



Two-plane EM waves with p-polarization show shared 
plasma waves in both the large- and small-k regions
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed
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The absolute threshold is lower than the convective threshold in most 
cases; the regime of linear convective growth is very restricted.
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Comparison between ZAK3D and convective gain 
for four beams with parallel polarization shows 
consistency for large k
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In the nonlinear stage, a state of nonlinear Langmuir 
wave turbulence propagates to lower densities
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•	 TPD driven by two beams with in-plane polarization (p-polarized) 
is simulated in the nonlinear stage  I14 = 1.2,  Ln  = 330 nm, and i = 27°
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Density perturbations generated by the strong Langmuir 
turbulence restore growth to the convectively saturated 
modes; these dominate at late times
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•	 Two beams, p-polarized,  I14 = 1.2,  Ln  = 330 nm, and i = 27°
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Summary/Conclusions

Two-plasmon decay (TPD) driven by multiple beams  
in inhomogeneous plasma is investigated using ZAK3D*

	*	J. Zhang et al., Bull. Am. Phys. Soc. 57, 299 (2012).
	**	C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003);  
		 D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
	 †	R. W. Short et al., Bull. Am. Phys. Soc. 57, 300 (2012).

•	 Multibeam effects have been observed to be important in the 
TPD instability**

•	 Convective growth of shared plasma waves having k ~ k0 have 
been predicted theoretically†

•	 Our simulations recover this result, but indicate that small-k 
modes can share plasma waves and therefore give a lower 
absolute threshold for multiple beams

•	 ZAK3D models the nonlinear coupling to ion-density fluctuations

•	 In the nonlinear stage, Rosenbluth convective gain is not 
observed because of the existence of ion-acoustic fluctuations

•	 This might be able to explain why OMEGA experiments have 
shown hot-electron production for small convective gain



The Langmuir wave equation is formally equivalent to 
the fluid equations used by Liu† and Simon‡
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Fourier transforming the Langmuir wave (LW) equation in time  
and space, after simple derivation it leads to these N + 1 equations
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where	~d,m = ~ – ~0,m kd,m = k – k0,m, ud,m = u – u0,m
V0 is the electron oscillation velocity in laser field

†C. S. Liu and M. N. Rosenbluth, Phys. Fluids 19, 967 (1976).
‡A. Simon et al., Phys. of Fluids 26, 3107 (1983).


