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Measurements indicate that only 25% of the hot electrons 
produced by two-plasmon decay (TPD) would preheat 
the fuel in direct-drive experiments*

TC10660

Summary

•	 In direct-drive experiments on OMEGA, the energy in fast electrons was 
found to reach ~1% of the laser energy at an irradiance of ~1.1 × 1015 W/cm2

•	 The divergence of fast electrons was deduced from experiments where 
Mo-coated shells of increasing diameter (D) were embedded within  
an outer CH shell

•	 The intensity of the Mo-Ka line and the hard x-ray radiation increased 
approximately as ~D2, indicating a wide divergence of fast electrons

•	 Alternative interpretations of these results (electron scattering, radiative 
excitation of Ka, and an electric field caused by the return current) are 
shown to be unimportant

*B. Yaakobi, A. A. Solodov, J. F. Myatt, J. A. Delettrez, C. Stoeckl, and D. H. Froula, 
submitted to Physical Review Letters.
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TPD generates hot electrons that can couple energy  
to the imploding shell, raising the adiabat and potentially 
quenching ignition
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•	 Calculating the energy coupled  
to the fuel (preheat) requires

–	 Thot, fhot
–	 angular divergence (i)

–	 energy lost to the sheath
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Direct-drive ignition requires that less than ~0.1% of the laser 
energy be coupled to the unablated fuel.



Extending the intensity to ignition conditions indicates that 
~1% of the laser energy can be converted to hot electrons 
with a characteristic temperature of 50 to 100 keV

E21309d

•	 The experiments suggest that the hot-electron fraction has the same scaling 
with the temperature in different geometries
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	* D. H. Froula et al., Plasma Phys. Control. Fusion 54, 124016 (2012). 



In typical cryogenic direct-drive experiments* only ~1/4  
of the fast electrons will be intercepted by the compressed 
fuel if the hot electrons have a wide angular divergence
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•	 Fast electrons are generated 
near the end of the laser pulse** 
when the density scale length 
is maximal

•	 At that time the compressed fuel 
shell has converged to about half 
the original target size*
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	* V. N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010).
** C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003).



The divergence of fast electrons was studied using 
targets with Mo spheres of different diameters
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•	 26-kJ, 1-ns square-shaped OMEGA pulses with IL ~ 1.1 × 1015 W/cm2 were used

•	 Mo Ka and hard x-ray (HXR) energy dependence on the diameter

–	 is unchanged for directed electrons

–	 increases for divergent electrons
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The transport of hot electrons was modeled 
with the Monte Carlo code EGSnrc*
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•	 EGSnrc modeled the transport of hot electrons and electron-induced 
HXR and Mo K-shell fluorescent radiation

•	 EGSnrc simulations assumed a 3-D Maxwellian hot-electron distribution 
with the temperature predicted by the four-channel HXR detector

•	 The divergence of hot electrons was varied from 0° (parallel beam) 
to 180° (isotropic beam)  

  

Divergent electron beamParallel electron beam

	* I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011); 
	 I. Kawrakow, Med. Phys. 27, 485 (2000). 



The experiments show that fast electrons have a wide 
divergence extending to the original target diameter
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•	  TCS – Cauchois-type quartz crystal spectrometer

•	 XRS – two identical planar LiF crystal x-ray spectrometers

•	 MC simulations assumed an isotropic hot-electron beam
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Three alternative explanations to the rise in signals were 
investigated and found to be unimportant
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•	 Electron scattering  
in the outer CH shell

•	 Radiative excitation  
of the Mo-Ka line

•	 Radial electric field related 
to the return current within 
the ionized N2 fill gas

Divergence: Mo Ka, HXR, 
and MC, Mo Balls
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Electron scattering in CH was shown to be unimportant 
by EGSnrc Monte Carlo simulations

TC10666

•	 Electrons that are strongly scattered in CH are also strongly absorbed
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Ka line pumping by the plasma radiation from the laser 
absorption region in the CH is unimportant
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•	 Radiation contribution to Ka 

	 / ,K dIE E E E Ec KR E0
~=

3

a^ ^h h6 @#   

	 where Ic (E) is the continuum spectrum,

	 E0 ~ 20 keV is the K edge 

	 .0 76K~ =  is the Ka fluorescent yield of Mo  

•	 For the largest Mo ball diameter, ER is less 
than 10% of the total energy of the Ka line

•	 The relative contribution of the radiation is 
the same for all Mo diameters (but can best 
be determined from the largest diameter)

0.01

0.1

1
Ka

Kb

K edge

1917 21

Photon energy (keV)

S
ig

n
al

 (
P

S
L

)

D = 806 nm
D = 388 nm

Spectrum from Mo balls, TCS



A negligible effect of the retarding electric fields 
is confirmed by the analytical model using plasma 
profiles from LILAC radiation–hydrodynamic simulations
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•	
/ , / . / ,with ande eIE r J r r J r f E N m1 96/hot hot hot L hot e e1 4

2v v x= = =^ ^ ^ ^h h h h  

v(r) was estimated using the temperature and ionization of the N2 gas 
simulated by the LILAC code
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Summary/Conclusions

*B. Yaakobi, A. A. Solodov, J. F. Myatt, J. A. Delettrez, C. Stoeckl, and D. H. Froula, 
submitted to Physical Review Letters.

Measurements indicate that only 25% of the hot electrons 
produced by two-plasmon decay (TPD) would preheat 
the fuel in direct-drive experiments*

•	 In direct-drive experiments on OMEGA, the energy in fast electrons was 
found to reach ~1% of the laser energy at an irradiance of ~1.1 × 1015 W/cm2

•	 The divergence of fast electrons was deduced from experiments where 
Mo-coated shells of increasing diameter (D) were embedded within  
an outer CH shell

•	 The intensity of the Mo-Ka line and the hard x-ray radiation increased 
approximately as ~D2, indicating a wide divergence of fast electrons

•	 Alternative interpretations of these results (electron scattering, radiative 
excitation of Ka, and an electric field caused by the return current) are 
shown to be unimportant


