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lon-acoustic waves (IAW) driven by ponderomotive Several potential TPD saturation mechanisms have been The ion-wave amplitude quickly turns off

beating of electron-plasma waves from two-plasmon studied both experimentally and theoretically once two-plasmon decay is no longer driven
UR

decay (TPD) have been observed LLE
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angles or frequencies, creates spatial — (Ex2) | |
variations in the E field, which can — &ning
drive density perturbations through the
ponderomotive force*

Previous work shows that beating of electron-plasma waves
drives density perturbations through the ponderomotive force*
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Time-resolved Thomson-scattering spectra at quarter critical show
that the amplitude of the ion-acoustic waves follow the amplitude

of the 3/2w emission (a TPD signature) This effect has been simulated at
] ] ] quarter-critical using 2-D particle-in-cell
lon-acoustic waves grow rapidly to large amplitudes (6,,‘5/ne ~ 0.01%) (PIC) codes*

once a threshold in electron-plasma wave amplitude is reached
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Previous experiments have seen
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ZAK simulations indicate beating of electron-plasma waves.

lon-acoustic waves are produced by ponderomotive
beating of electron-plasma waves.

*R.Yan et al., Phys. Rev. Lett. 103, 175002 (2009).
**K.Y. Sanbonmatsu et al., Phys. Rev. Lett. 82, 932 (1999). *R.Yan et al., Phys. Rev. Lett. 103, 175002 (2009).
E21319 tD. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3-5 April 2002. E21322 **H, A. Baldis, J. C. Samson, and P. B. Corkum, Phys. Rev. Lett. 41, 1719 (1978). E21324

The experimental setup involves a Thomson telescope Thomson scattering (TS) at quarter critical allows for The scattered power from ion-acoustic waves

coupled to spectrometers and streak cameras assessment of the plasma conditions and verification is compared to 3/2c emission

uR_ of the hydro modeling uR

2-ns OMEGA pulses with 20 beams were used LLE
to heat 90-um (30 CH/30 Mo/30 CH) targets ; 0S (k,0) at 2 x 1014 W/cm?2 Normalized scatter power versus 3/2a emission
. |

Thomson scattering was used to measure Pfund telescopes The scattered ion-acoustic wave o - | | | | |

IAW amplitudes near 3w quarter-critical spectra can be used to calculate
Te and T; in the collisionless regime

The 1-m spectrometer output to a ROSS streak camera i %
has 200-ps temporal and 0.03-nm spectral resolution* This measurement is limited to laser

/ intensities below 2 x 1014 W/cm?2
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The 1/3-m spectrometer has 100-ps temporal
and 0.5-nm spectral resolution*
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*J. Katz et al., “A Reflective Optical Transport for Streaked Thomson Scattering and Gated Imaging on OMEGA,” *D. H. Froula et al., Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, wave amplltudes.
e21320 Submitted to Review of Scientific Instruments. E21321 2nd ed. (Academic Press, Burlington, MA, 2011). E21325
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The Thomson scattering geometry looks at ion-acoustic Time-resolved spectra are used to compare the temporal lon-density perturbations are compared to ZAK

wave k-vectors near the plane of the target evolution of ion-acoustic wave and 3/2aw amplitudes simulations*:T and a similar growth threshold is observed
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F21926 F21323 lon-wave amplitudes follow the amplitude of 3/2« emission.




lon-acoustic waves (IAW) driven by ponderomotive
beating of electron-plasma waves from two-plasmon

decay (TPD) have been observed
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Previous work shows that beating of electron-plasma waves
drives density perturbations through the ponderomotive force*

Time-resolved Thomson-scattering spectra at quarter critical show
that the amplitude of the ion-acoustic waves follow the amplitude
of the 3/2w emission (a TPD signature)

lon-acoustic waves grow rapidly to large amplitudes (6,,e/ne ~ 0.01%)
once a threshold in electron-plasma wave amplitude is reached

ZAK simulations show similar behavior**.t

ZAK simulations indicate beating of electron-plasma waves.

*R.Yan et al., Phys. Rev. Lett. 103, 175002 (2009).
**K.Y. Sanbonmatsu et al., Phys. Rev. Lett. 82, 932 (1999).
tD. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3-5 April 2002.



The experimental setup involves a Thomson telescope

coupled to spectrometers and streak cameras
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The Thomson scattering geometry looks at ion-acoustic
wave k-vectors near the plane of the target
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Several potential TPD saturation mechanisms have been

studied both experimentally and theoretically
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lon-acoustic waves are produced by ponderomotive
beating of electron-plasma waves.

*R.Yan et al., Phys. Rev. Lett. 103, 175002 (2009).
E21322 **H. A. Baldis, J. C. Samson, and P. B. Corkum, Phys. Rev. Lett. 41, 1719 (1978).



Thomson scattering (TS) at quarter critical allows for
assessment of the plasma conditions and verification
of the hydro modeling
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*D. H. Froula et al., Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques,
E21321 2nd ed. (Academic Press, Burlington, MA, 2011).



Time-resolved spectra are used to compare the temporal
evolution of ion-acoustic wave and 3/2cw amplitudes

UR

Thomson IAW
spectrum

3/2w spectral
distribution

Amplitude
(arbitrary units)

E21323

Wavelength shift (nm)

4.23 kJ for 64782 4.66 kJ for 64786 6.37 kJ for 64785

10,000
8,000
6,000
4,000
2,000

0 1 2
Time (ns)
IAW amplitude versus 3/2w emission

i ! ! R

LLE

— lon
waves

— 32w
emission

00 05 1.0 15 2.0 00 05 10 15 2.0 25 0.0 05 1.0 15 2.0 2.5

Time (ns) Time (ns) Time (ns)

lon-wave amplitudes follow the amplitude of 3/2cw emission.




The ion-wave amplitude quickly turns off
once two-plasmon decay is no longer driven
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The scattered power from ion-acoustic waves
is compared to 3/2w emission
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lon-density perturbations are compared to ZAK

simulations*T and a similar growth threshold is observed

UR
LLE

rms ion-acoustic wave amplitude
versus intensity

e Op/n can be calculated using

the ratio of the driven to thermal —~ 5 |[m IExp;rimelnt — . 1
scattered power¥ and compared )i m ZAK simulation
to ZAK simulations % 4 | i
1.2 5 %
Pthermal=§r()nel-"-,icIQ = 3r |
AN
1 02 2 Sn )2 c 2 ]
Pdriven=Zr0n§Ai L2Pi<n—2> % _ L
= 7 on it
On _ Pdriven _2dQ " - "< trll‘?rmal
Ne ™4/ Pthermal n A2L 0 L
e/l 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

I44 (W/sz)

The threshold for ion-acoustic wave growth in both ZAK
simulations and experiments is between 2 and 3 x 1014 W/cm?2.

*K.Y. Sanbonmatsu et al., Phys. Rev. Lett. 82, 932 (1999).

TD. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3-5 April 2002.

#D. H. Froula et al., Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques,
E21334 2nd ed. (Academic Press, Burlington, MA, 2011).
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