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TPD preheat can be reduced through the manipulation 
of the collisional and Landau damping of Langmuir 
and ion-acoustic waves
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Summary

• Langmuir wave (LW) collisional damping has an impact on the growth 
rate/thresholds [in addition to the hydrodynamic variables (Dne, Te)]

– importance increases with the scale length

• Nonlinear saturation is sensitive to plasma composition (GZH, Ti, GZH2) 
via the ion-acoustic damping rate

– predictions with the 2-D code ZAK*

– hot-electron predictions with the 2-D code QZAK**

– suggestions for planar experiments

* D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).

** D. A. Russell et al., “Two-plasmon-decay turbulence driven by 
the shared-wave triad of two crossed beams,” this conference.
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* D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).

• “Extended” Zakharov equations used in ZAK*
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TPD source term

The ZAK model of TPD is used to predict linear instability 
and nonlinear saturation caused by density fluctuations

Dispersion relations  
for LW and IAW

D i D

D D D c2

2 3

i

e e

t

p t

t s

0
2 2

2

LW

IAW

)

) -

d

d

~ o o

o

= + +

= + 2 2

_

_

i

i

9 C

Collisional threshold

Gradient thresholdGradient threshold



The collisional TPD threshold can be made to exceed 
the gradient threshold (for Si at ignition scale) 
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Linear Stability
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Two-dimensional ZAK calculations assume two 
overlapped plane electromagnetic (EM) waves* 
polarized in their plane of incidence
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• This has the feature that 
TPD is driven unstable 
convectively even 
when the single-beam 
intensities are below 
threshold

• G]E]2H is computed 
at saturation
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* D. T. Michel et al., “Experimental Demonstration of the Two-
Plasmon-Decay Common-Wave Process,” this conference.
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Increased collisional damping of LW’s leads to a lower 
saturated level of electrostatic fluctuations for Zeff = 14
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ZAK Calculations
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R. Betti, “Advanced Ablator Target Designs for Shock and Hot 
Spot Ignition on the National Ignition Facility,” this conference.



The nonlinear evolution of TPD in the ZAK model 
depends on the ion-acoustic damping rate oi
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* D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).

• “Extended” Zakharov equations used in ZAK*
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Dispersion relations  
for LW and IAW
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Decreasing the IAW damping leads to a dramatic 
reduction in the level of electrostatic fluctuations
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The reason that decreasing the IAW damping lowers  
the saturation level is not fully understood

TC10040

• Langmuir-decay instability

• Ponderomotive response to unstable LW spectrum
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The reason that decreasing the IAW damping lowers  
the saturation level is not fully understood
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• Langmuir-decay instability

• Ponderomotive response to unstable LW spectrum
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QZAK* is an extension of ZAK to self-consistently include 
hot-electron generation in the quasilinear approximation
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• The diffusion equation
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* D. A. Russell et al., “Two-Plasmon-Decay Turbulence Driven by the Shared-Wave Triad of 
Two Crossed Beams”; H. X. Vu et al., “Hot Electron Generation by ‘Cavitating’ Langmuir 
Turbulence in the Nonlinear Stage of the Two Plasmon Decay Instability,” this conference.



The LW Landau damping rate oe (k) is recalculated 
based on the evolving distribution function
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• The damping is the only mechanism where the particles act back on the waves

:-,
,

dk t
k

k f t
k

2
v

v
v

v
2

3 e:

2

2
o r ~ d ~= e

pee h^ ^ ^h h#

t = 0 t = 50 ps

–0.2

0.0

0.2

0.4

oe/~e
Arbitrary 

units

–0.4

k 9
/k

D

–0.2 0.0 0.2 0.4–0.4–0.2 0.0 0.2 0.4–0.4

101.5

100.1

10–1.3

10–2.7

oe/~e oe/~e

400

200

0
–0.5 0.50.0

k9/kDe



QZAK predicts less hot-electron production 
for a plasma with weakly damped ion-acoustic waves
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Ion-acoustic damping can be manipulated by modifying 
the plasma composition

TC10043

• Ion Landau damping decreases with ZTe / Ti (cs & vti)

• Electron Landau damping in IAW’s is always weak (vte & cs) 

• Light ions (e.g., hydrogen) can increase the damping rate

• The multi-ion dispersion relation is solved by finding  
the most weakly damped mode*

• Ion–ion collisions complicate the matter

• Part of the spectrum will be collisionally damped because 
of ion viscosity (kmii < 10)

*E. A. Williams et al., Phys. Plasmas 2, 129 (1995).



These effects can be investigated experimentally  
in planar targets on OMEGA/OMEGA EP†
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• Thomson scattering 
from enhanced IAW*

• Hard x rays can be 
measured

35

30

25

20

15

10

5

0
5 10 15

IL (×1014 W/cm2)

GO
E
K2
H 

(Z
A

K
 u

n
it

s)

Ln = 300 nm
Te = 2 keV

CH + Si(42.5/42.5/15)
CH(50/50)
CH + Ge(47.5/47.5/5)

Si

SiO2

† S. X. Hu et al., “Analyses of Long-Scale-Length Plasma Experiments with 
Different Ablator Materials on the OMEGA EP Laser System,” this conference. 

* R. K. Follet et al., “Thomson-Scattering Measurements of Ion-Acoustic Wave 
Amplitudes Driven by the Two-Plasmon Decay Instability,” this conference.



Summary/Conclusions
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TPD preheat can be reduced through the manipulation 
of the collisional and Landau damping of Langmuir 
and ion-acoustic waves

• Langmuir wave (LW) collisional damping has an impact on the growth 
rate/thresholds [in addition to the hydrodynamic variables (Dne, Te)]

– importance increases with the scale length

• Nonlinear saturation is sensitive to plasma composition (GZH, Ti, GZH2) 
via the ion-acoustic damping rate

– predictions with the 2-D code ZAK*

– hot-electron predictions with the 2-D code QZAK**

– suggestions for planar experiments

* D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); 
D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).

** D. A. Russell et al., “Two-plasmon-decay turbulence driven by 
the shared-wave triad of two crossed beams,” this conference.



Time histories at mid-intensities
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