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PIC simulations up to 10 ps for OMEGA parameters 
show saturation of two-plasmon decay (TPD) 
and hot-electron generation

TC9410

Summary

• In PIC simulations, significant laser absorption and hot-electron 
generation occur in the nonlinear stage

• Generation of hot electrons is correlated with new TPD modes 
in the lower density region during the nonlinear stage

• The new TPD modes are correlated with ion-density fluctuations

• Hot electrons are accelerated from the low-density region  
to the high-density region through a staged process

• In fluid simulations with a linear TPD code, a spectrum 
similar to PIC simulations is observed with static ion-density 
fluctuations



The two-plasmon decay (TPD) 
is important to direct-drive ICF

TC9116

• Energetic (hot) electrons 
generated from laser–plasma 
interactions can preheat  
the shell and degrade the 
implosion

• Low-energy hot electrons  
from TPD may be beneficial  
to the shock-ignition scheme*

• It is important to know  
the spectrum and amount  
of the hot electrons  
caused by TPD
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*R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).



Long-time-scale PIC simulations with OSIRIS*
have been conducted for a range of OMEGA parameters

TC9412

• Plane wave and Gaussian beams 
are used

• The simulation box  
is transversely periodic

• The open boundaries are used  
for fields and the thermal-
reflecting boundaries are used 
for particles in the longitudinal 
direction

• Boundary diagnostics record  
the energy distribution  
of the particles going out of the 
thermal-reflecting boundaries

*R. A. Fonseca et al., Lect. Notes Comp. Sci. 2331, 342 (2002).
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Net particle-energy flux reaches  
a quasi-steady state after ~5 ps
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In the quasi-steady state
 – absorbed laser energy is balanced by the energy flux exiting the box
 – the particle and field energies in the simulation box are essentially   

     constant



Most hot electrons are produced in the nonlinear stage

TC9416
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Many more hot electrons reached the rear boundary 
during the nonlinear stage than during the linear stage

TC9417
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The net energy flux exiting the right boundary includes 
significant contribution from the hot electrons

TC9418

–0.02

0 t
o 5

5 t
o 10

10
 to

 25

25
 to

 50

50
 to

 10
0

10
0 t

o 15
0

15
0 t

o 20
0

20
0 t

o 25
0

25
0 t

o 30
0

30
0 t

o 35
0

35
0 t

o 40
0

Ove
r 4

00

E
n

er
gy

 fl
u

x/
la

se
r 

flu
x

Electron energy (keV)

Normalized instant net e– energy flux at t = 9.9 ps

6.14%

3.10%

4.54%

5.49%

4.27%

1.97%

0.58%
0.19%

0.10%

–0.41%

0.02

0.00

0.01

–0.01

0.03

0.04

0.06

0.05

0.07

–1.53%

0.24%



The hot electrons are generated through staged 
acceleration initiated by new TPD modes  
with low phase velocity in the nonlinear stage
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t = 9.8 ps
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Ion-density fluctuations are driven by plasma waves 
propagating to lower density regions

TC9420

• The region of ion-density 
fluctuations is spreading 
at the group velocity of 
plasma waves with the 
largest k

• Ion fluctuations at the low-
density region can induce 
new TPD modes locally
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A linear–fluid code has been developed to study  
the spectrum of TPD with an arbitrary static  
background-density profile

TC9122a

• The density fluctuation  
is modeled by a static  
n = n0(x) + dn

•  The fluid code solves      
   linear equations:
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Fluid simulations produce modes similar to PIC simulations
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• The background  
density profile  
is read from OSIRIS 
simulation results

• The spectrum obtained 
in the fluid simulation  
is similar to that from  
the PIC simulation

• The differences in the 
relative amplitudes  
may be due to  
electron acceleration
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The energy carried by hot electrons  
in plane-wave PIC simulations is high
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I14max T (keV)/
Ti (keV) L h*

Total 
absorption

Hot (>50-keV) 
electrons

3 3/1.5 150 0.6 ~0 ~0

6 3/1.5 150 1.2 42% 17%

8 3/1.5 150 1.4 39% 15%

*A. Simon et al., Phys. Fluids 26, 3107 (1983).



Important differences exist between  
the simuations and experiments

TC9422

• Large absorption indicates that better coupling between PIC and hydro 
simulations is needed

• Speckles

 – in experiments, polarization smoothing changes laser polarization even  
 within a single speckle, which needs 3-D modeling

 – simulation with a narrow beam has shown a reduced hot-electron generation
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Simulation with a narrow beam showed a reduced  
hot-electron generation

TC9415a

I14max T (keV)/
Ti (keV) L h

Total
absorption

Hot (>50-keV) 
electrons

3 3/1.5 150 0.6 ~0 ~0

6 3/1.5 150 1.2 42% 17%

8 3/1.5 150 1.4 39% 15%

8 (W = 4 nm) 3/1.5 150 1.4 22% 5%



PIC simulations up to 10 ps for OMEGA parameters 
show saturation of two-plasmon decay (TPD) 
and hot-electron generation

TC9410

• In PIC simulations, significant laser absorption and hot-electron 
generation occur in the nonlinear stage

• Generation of hot electrons is correlated with new TPD modes 
in the lower density region during the nonlinear stage

• The new TPD modes are correlated with ion-density fluctuations

• Hot electrons are accelerated from the low-density region  
to the high-density region through a staged process

• In fluid simulations with a linear TPD code, a spectrum 
similar to PIC simulations is observed with static ion-density 
fluctuations

Summary/Conclusions


