Energetic—Electron Generation in Two-Plasmon-Decay

Instabilities in Inertial Confinement Fusion
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PIC simulations up to 10 ps for OMEGA parameters
show saturation of two-plasmon decay (TPD)
and hot-electron generation

UR
LLE

* In PIC simulations, significant laser absorption and hot-electron
generation occur in the nonlinear stage

e Generation of hot electrons is correlated with new TPD modes
in the lower density region during the nonlinear stage

e The new TPD modes are correlated with ion-density fluctuations

* Hot electrons are accelerated from the low-density region
to the high-density region through a staged process

e In fluid simulations with a linear TPD code, a spectrum
similar to PIC simulations is observed with static ion-density
fluctuations
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The two-plasmon decay (TPD)
is important to direct-drive ICF
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the spectrum and amount
of the hot electrons
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Long-time-scale PIC simulations with OSIRIS*

have been conducted for a range of OMEGA parameters
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* Plane wave and Gaussian beams A
are used y
~HI=3to 8 x 1014 W/cm?2

e The simulation box
is transversely periodic Laser>
* The open boundaries are used 42 um <

for fields and the thermal-

reflecting boundaries are used L =150 um

for particles in the longitudinal Te =3 keV
direction 0~ -
. . 0 M X
e Boundary diagnostics record 38 um
the energy distribution Simulation configuration
of the particles going out of the for OMEGA parameters

thermal-reflecting boundaries
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Net particle-energy flux reaches

a quasi-steady state after ~5 ps U
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In the quasi-steady state
— absorbed laser energy is balanced by the energy flux exiting the box

— the particle and field energies in the simulation box are essentially
constant
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Most hot electrons are produced in the nonlinear stage
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Many more hot electrons reached the rear boundary
during the nonlinear stage than during the linear stage
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The net energy flux exiting the right boundary includes

significant contribution from the hot electrons
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The hot electrons are generated through staged
acceleration initiated by new TPD modes

with low phase velocity in the nonlinear stage
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lon-density fluctuations are driven by plasma waves
propagating to lower density regions
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A linear—fluid code has been developed to study

the spectrum of TPD with an arbitrary static
background-density profile
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* The fluid code solves oy ep 3vinp .
linear equations: 3% —m -~ —n Yo VY V=V
oanp . -
—¢ + Vo Vnp=-V-(nVy) E=—V¢

* The density fluctuation
is modeled by a static
n = ng(x) + on
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Fluid simulations produce modes similar to PIC simulations
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The energy carried by hot electrons
in plane-wave PIC simulations is high

URrR
LLE
e L o "
3/ 1.5 150 ~0
6 3/1.5 150 1.2 42% 17%
8 3/1.5 150 1.4 39% 15%
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Important differences exist between

the simuations and experiments LR

LLE

e Large absorption indicates that better coupling between PIC and hydro
simulations is needed

e Speckles

— in experiments, polarization smoothing changes laser polarization even
within a single speckle, which needs 3-D modeling

— simulation with a narrow beam has shown a reduced hot-electron generation
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Simulation with a narrow beam showed a reduced

hot-electron generation
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Summary/Conclusions

PIC simulations up to 10 ps for OMEGA parameters
show saturation of two-plasmon decay (TPD)
and hot-electron generation
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* In PIC simulations, significant laser absorption and hot-electron
generation occur in the nonlinear stage

e Generation of hot electrons is correlated with new TPD modes
in the lower density region during the nonlinear stage

e The new TPD modes are correlated with ion-density fluctuations

* Hot electrons are accelerated from the low-density region
to the high-density region through a staged process

e In fluid simulations with a linear TPD code, a spectrum
similar to PIC simulations is observed with static ion-density
fluctuations

TC9410



