Controlling the Divergence of Laser-Generated Fast Electrons Through Resistivity Gradients in Fast-Ignition Targets

A. A. Solodov University of Rochester Laboratory for Laser Energetics 41st Annual Anomalous Absorption Conference San Diego, CA 19–24 June 2011

Summary

FSC

Divergence of high-energy electron beams can be controlled through resistivity mismatch in fast-ignition targets*

- LSP** simulations predict collimation of high-energy electron beams by resistivity gradients
- Four cases have been modeled
 - Cu cone
 - Al cone with Cu insert in the cone tip
 - Al cone with a Cu wire attached to the cone tip most effective
 - Cu-lined diamond cone

Collimation by resistivity gradients increases the coupling to the core.

^{*}A. P. L. Robinson and M. Sherlock, Phys. Plasmas <u>14</u>, 083105 (2007).

^{**}D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).

R. Betti, K. S. Anderson, J. F. Myatt, W. Theobald, and C. Stoeckl

University of Rochester Laboratory for Laser Energetics and Fusion Science Center

Self-generated resistive magnetic fields can control divergence of electron beams in plasmas*

 Electron collimation by B fields generated by resistivity gradients*

A thin Cu fiber embedded in AI effectively collimates a highly divergent 15-kJ electron beam in the LSP simulation FSE

• Simulation for a 7-ps, 2-MeV mean-energy, 67° half-angle electron beam

• Even though $\nabla \eta$ changed direction due to fiber heating, collimation is maintained because $|\eta \nabla \times \vec{j}_h|$ becomes greater than $|\nabla \eta \times \vec{j}_h|$

Collimated electrons contain 65% of the beam energy.

Electron transport in fast-ignition targets using materials with different resistivities has been modeled with LSP

- Electron beam: E_{tot} = 40 kJ, τ = 10 ps, r_0 = 20 μ m, T_{hot} = 1.6 MeV, $\theta_{1/2}$ = 67°
- Ionization and radiative cooling are modeled
- Energy coupled to the "ignition region" is calculated and compared in the simulations

Electrons are effectively collimated by resistivity gradients in the cone tip and in the wire

UR

Electron-beam density ($cm^{-3} \times 10^{22}$) at the time of peak power

Hot-electron divergence is controlled by a resistive magnetic field FSC

LL

Resistive collimation significantly improves electron coupling to the core

UR

Energy coupled to the "ignition region"					
2.7 kJ (7%)	4.5 kJ (11%)	18 kJ (45%)			

• Resistive collimation can be especially useful for targets with thick cone tips

Hydrodynamic simulations are required to determine survivability of the wire during the implosion

- The wire is compressed radially and longitudinally during the implosion
- Asymmetric implosions may be advantageous
 - to protect the wire and the cone from the pressure build-up in the central hot spot
 - to facilitate ignition because of a larger fuel density and larger $\rho {\it R}$ in front of the wire

1-D *LILAC** simulations of capsule implosion on a copper sphere and a copper cylinder predict the compressed copper properties

	Diameter (µm)	Density (g/cm ³)	Temperature (eV)	$\begin{array}{c} \text{Cu resistivity} \\ (\Omega \times \text{m}) \end{array}$	DT resistivity $(\Omega \times m)$
Cu sphere	26	500	600	7 × 10 ⁻⁸	10 ^{_9}
Cu cylinder	26	150	275	2 × 10 ⁻⁷	10 ⁻⁸

- Simulations use a 200-kJ DT target design for direct-drive fast ignition**
- Increased stopping power in a compressed copper may require using higher-energy electrons for ignition (2 to 5 MeV)

^{*}J. A. Delettrez et al., Phys. Rev. A <u>36</u>, 3926 (1987).

^{**}R. Betti and C. Zhou, Phys. Plasmas <u>12</u>, 110702 (2005).

Electron collimation by a high-resistivity material at the inner-cone surface has been modeled

UR 🔌

- Diamond cone with Cu tip and Cu inner layer
- Cu pre-plasma: ρ = 0.02 ρ_{solid} with 1.5- μ m exponential gradient length at the cone surface
- Electron beam: $E_{\text{tot}} = 300 \text{ J}, \tau = 10 \text{ ps}, r_0 = 14 \ \mu\text{m}, T_{\text{hot}} = 1 \text{ MeV}, \theta_{1/2} = 67^{\circ}$

Hot-electron collimation in a Cu-lined cone is not as effective as in the wire FSE

• Simulation results at *t* = 5 ps

Electrons collimated to the cone tip contain 17% of the beam energy.

Divergence of high-energy electron beams can be controlled through resistivity mismatch in fast-ignition targets*

- LSP** simulations predict collimation of high-energy electron beams by resistivity gradients
- Four cases have been modeled
 - Cu cone
 - Al cone with Cu insert in the cone tip
 - Al cone with a Cu wire attached to the cone tip most effective
 - Cu-lined diamond cone

Collimation by resistivity gradients increases the coupling to the core.

^{*}A. P. L. Robinson and M. Sherlock, Phys. Plasmas <u>14</u>, 083105 (2007).

^{**}D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).